Towards an Inclusive, Safe, Resilient and Sustainable City: Approaches and Tools
Editor in chief
Luigi Fusco Girard, Department of Architecture, University of Naples Federico II, Naples, Italy

Co-editors in chief
Maria Cerreta, Department of Architecture, University of Naples Federico II, Naples, Italy
Pasquale De Toro, Department of Architecture, University of Naples Federico II, Naples, Italy

Associate editor
Francesca Ferretti, Department of Architecture, University of Naples Federico II, Naples, Italy

Editorial board
Antonio Acierno, Department of Architecture, University of Naples Federico II, Naples, Italy
Luigi Biggeri, Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
Francesco Bruno, Department of Architecture, University of Naples Federico II, Naples, Italy
Vito Cappiello, Department of Architecture, University of Naples Federico II, Naples, Italy
Mario Coletta, Department of Architecture, University of Naples Federico II, Naples, Italy
Teresa Colletta, Department of Architecture, University of Naples Federico II, Naples, Italy
Ilana Corbi, Department of Structures for Engineering and Architecture, University of Naples Federico II, Naples, Italy
Livia D’Apuzzo, Department of Architecture, University of Naples Federico II, Naples, Italy
Gianluigi de Martino, Department of Architecture, University of Naples Federico II, Naples, Italy
Francesco Forte, Department of Architecture, University of Naples Federico II, Naples, Italy
Rosa Anna Genovese, Department of Architecture, University of Naples Federico II, Naples, Italy
Fabrizio Mangoni di Santo Stefano, Department of Architecture, University of Naples Federico II, Naples, Italy
Luca Pagano, Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Naples, Italy
Stefania Palmentieri, Department of Political Sciences, University of Naples Federico II, Naples, Italy
Luigi Picone, Department of Architecture, University of Naples Federico II, Naples, Italy
Michelangelo Russo, Department of Architecture, University of Naples Federico II, Naples, Italy
Salvatore Sessa, Department of Architecture, University of Naples Federico II, Naples, Italy

Editorial staff
Alfredo Franciosa, Department of Architecture, University of Naples Federico II, Naples, Italy
Francesca Nocca, Department of Architecture, University of Naples Federico II, Naples, Italy

Scientific committee
Roberto Banchini, Ministry of Cultural Heritage and Activities (MIBACT), Rome, Italy
Alfonso Barbarisi, School of Medicine, Second University of Naples (SUN), Naples, Italy
Eugenie L. Hirsch, School of Design, University of Pennsylvania, Philadelphia, United States of America
Roberto Camagni, Department of Building Environment Science and Technology (BEST), Polytechnic of Milan, Milan, Italy
Leonardo Casini, Research Centre for Appraisal and Land Economics (Ce.S.E.T.), Florence, Italy
Rocco Curto, Department of Architecture and Design, Polytechnic of Turin, Turin, Italy
Sasa Dobricic, University of Nova Gorica, Nova Gorica, Slovenia
Maja Fredotovic, Faculty of Economics, University of Split, Split, Croatia
Adriano Giannola, Department of Economics, Management and Institutions, University of Naples Federico II, Naples, Italy
Christa Gustafsson, Department of Art History, Conservation, Uppsala University, Uppsala, Sweden
Emiko Kakinouchi, National Graduate Institute for Policy Studies, Tokyo, Japan
Karima Kourtit, Department of Spatial Economics, Free University, Amsterdam, The Netherlands
Mario Lossio, Department of Architecture, University of Naples Federico II, Naples, Italy
Jean-Louis Luxen, Catholic University of Louvain, Belgium
Andrea Musullo, Greenaccord Onlus, Rome, Italy
Alfonso Morvillo, Institute for Service Industry Research (RAT) - National Research Council of Italy (CNR), Naples, Italy
Giuseppe Munda, Department of Economics and Economic History, Universitat Autonoma de Barcelona, Barcelona, Spain
Peter Nijkamp, Department of Spatial Economics, Free University, Amsterdam, The Netherlands
Christian Ost, ICHEC Brussels Management School, Ecaussinnes, Belgium
Donovan Rypkema, Heritage Strategies International, Washington D.C., United States of America
Ana Pereira Roders Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands
Joe Ravetz, School of Environment, Education and Development, University of Manchester, Manchester, United Kingdom
Paolo Stampacchia, Department of Economics, Management, Institutions, University of Naples Federico II, Naples, Italy
David Throsby, Department of Economics, Macquarie University, Sydney, Australia
INVESTIGATING CONDITIONS ENSURING RELIABILITY OF THE PRIORITY VECTORS

Bice Cavallo, Livia D’Apuzzo, Luciano Basile

Abstract

In this paper, we investigate conditions, weaker than consistency, that a pairwise comparison matrix has to satisfy in order to ensure that priority vectors proposed in literature are ordinal evaluation vectors for the actual ranking. In particular, we introduce a partial order on the rows of a pairwise comparison matrix; if it is a simple order, then the matrix is transitive, the actual ranking is easily established and priority vectors are ordinal evaluation vectors for the actual ranking.

Keywords: pairwise comparison matrices, ordinal evaluation vectors, simple order

INDAGARE LE CONDIZIONI CHE ASSICURINO L’AFFIDABILITÀ DEI VETTORI PRIORITÀ

Sommario

In questo articolo, analizziamo le condizioni, più deboli della consistenza, che una matrice di confronti a coppie dovrebbe soddisfare affinché i vettori priorità proposti in letteratura siano vettori di valutazione ordinale.

In particolare, introduciamo una relazione di ordine parziale sulle righe di una matrice di confronti a coppie; se tale relazione rappresenta un ordine semplice, allora la matrice è transitiva, ed è possibile stabilire in maniera semplice l’effettivo ordinamento e i vettori priorità sono vettori di valutazione ordinale.

Parole chiave: matrici di confronto a coppie, vettori di valutazione ordinale, relazione di ordine semplice
1. Introduction
Most decision processes related to planning, territory government, technology transfer, transportation, conflict resolution etc. involve a multiplicity of criteria and sub-objectives (e.g. economic and social), the satisfaction of which is crucial in building the best alternative.

The pairwise comparisons are an essential tool to establish the relative importance of criteria or sub-objectives that are measurable in different scales. In fact, they constitute the crucial tool of the Analytic Hierarchy Process (AHP) (Saaty, 1977, 1980, 1986, 2008), a Multi-Criteria method introduced by Saaty (1977) for evaluating alternatives.

The AHP organizes the elements of the decision process in a hierarchy and uses the pairwise comparisons for getting a weighted ranking of the elements of a level with respect to an element in the upper level; then the local weights of the elements of each level are combined to get the global weights of the alternatives.

Unfortunately, it may happen that the methods proposed in literature for obtaining weighted rankings for alternatives/criteria are not reliable. In this paper, we focus on this problem and propose a condition that ensures the reliability of these methods.

The paper is organized as follows: in Section 2, we introduce Multiplicative Pairwise Comparison Matrices (MPCMs) and a partial order \succeq on the rows of a matrix, we focus on transitive matrices and consistent matrices and show that if a matrix is transitive, but not consistent, then it may be that priority vectors proposed in literature are not reliable; in Section 3, we prove that if \succeq is a simple order, then the matrix is transitive and the priority vectors provide reliable weighted ranking; in Section 4, we provide concluding remarks and directions for future work.

2. Multiplicative pairwise comparison matrices and priority vectors
Let $X = \{x_1, x_2, \ldots, x_n\}$ be a set of decision elements such as criteria or alternatives and

$$A = (a_{ij}) = \begin{pmatrix}
1 & a_{12} & \cdots & a_{1n} \\
 a_{21} & 1 & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & 1
\end{pmatrix}$$

(1)

the related MPCM. Thus, the entry a_{ij} is a positive number that represents the preference ratio of x_i over x_j: so $a_{ij} = 1$ if and only if there is indifference between x_i and x_j, $a_{ij} > 1$ if and only if x_i is strictly preferred to x_j, whereas $a_{ij} < 1$ expresses the reverse preference.

For MPCMs, the following condition of reciprocity:

$$a_{ij} = \frac{1}{a_{ji}} \quad \forall i, j \in \{1, 2, \ldots, n\}$$

(2)

is assumed.

Under assumption of reciprocity, we set:

$$x_i \succ x_j \Leftrightarrow a_{ij} > 1, \quad x_i \sim x_j \Leftrightarrow a_{ij} = 1,$$

(3)
where \(x_i \succ x_j \) and \(x_i \sim x_j \) stand for “\(x_i \) is strictly preferred to \(x_j \)” and “\(x_i \) and \(x_j \) are indifferent”, respectively. Moreover, we set:

\[
x_i \succeq x_j \iff (x_i \succ x_j \text{ or } x_i \sim x_j) \iff a_y \geq 1,
\]

that stands for “\(x_j \) is weakly preferred to \(x_i \)”.

The relation \(\succ \) is asymmetric, the relation \(\sim \) is reflexive and symmetric and

\[
x_i \succ x_j \text{ or } x_i \sim x_j \text{ or } x_j \succ x_i \quad \forall i,j \in \{1,2,\ldots,n\}.
\]

The relation \(\succeq \) is strongly complete, that is:

\[
x_i \succeq x_j \text{ or } x_j \succeq x_i \quad \forall i,j \in \{1,2,\ldots,n\};
\]

thus, if \(\succeq \) is a transitive relation, then \(\succeq \) is a weak order (Roberts, 1979).

The transitivity of \(\succeq \) is the minimal logical requirement and a fundamental principle that preference relations should satisfy; the transitivity is in fact acyclic about the alternatives or criteria ranking. If \(\succeq \) is transitive, then there is a rearrangement \((i_1, i_2, \ldots, i_n)\) of \(\{1,2,\ldots,n\} \) such that:

\[
x_{i_1} \succeq x_{i_2} \succeq \ldots \succeq x_{i_n}.
\]

We call (7) the actual ranking on \(X \).

Order relations on the rows set of \(A = (a_y) \)

Let \(a_i = (a_{i1}, a_{i2}, \ldots, a_{in}) \) be the \(i \)-th row of \(A = (a_y) \) and \(R_A = \{a_1, a_2, \ldots, a_n\} \) the rows set of \(A = (a_y) \). Then, we consider the following order relations:

- \(\succ \) the strict partial order (i.e. \(\succ \) is transitive and asymmetric; see Roberts, 1979) on \(R_A \) defined by:

\[
\forall \{a_i, a_j\} \in R_A \quad a_i \succ a_j \iff a_{ij} > b_{ij}, \forall j \in \{1,2,\ldots,n\}.
\]

- \(\dagger \) the partial order (i.e. \(\dagger \) is reflexive, antisymmetric and transitive, see (Roberts, 1979)) on \(R_A \) defined by:

\[
\forall \{a_i, a_j\} \in R_A \quad a_i \dagger a_j \iff a_i \succ a_j \text{ or } a_i = a_j.
\]

We stress that if \(\dagger \) is strongly complete, that is:

\[
\forall \{a_i, a_j\} \in R_A \quad a_i \dagger a_j \iff a_i \dagger a_j = a_j,
\]

then \(\dagger \) is a simple order see (Roberts, 1979).

Transitive MPCMs and ordinal evaluation vectors

Cavallo and D’Apuzzo (2014) provide the notion of transitivity for a matrix defined over an abelian linearly ordered group; by considering MPCMs, we have the following definition:

Definition 1

\(A = (a_y) \) transitive if and only

\[
a_y \geq 1 \quad a_{yk} \geq 1 \Rightarrow a_{yk} \geq 1.
\]
Let \(A = (a_{ij}) \) be a reciprocal MPCM. By reciprocity, implication in (11) is equivalent to the following implications:

\[
a_{ij} > 1 \quad a_{jk} > 1 \Rightarrow a_{ik} > 1, \quad a_{ij} = 1 \quad a_{jk} = 1 \Rightarrow a_{ik} = 1.
\] (12)

Proposition 1

\(A = (a_{ij}) \) is transitive if and only if \(\succsim \) is a transitive relation.

Proof.

By Definition 1 and equation (4).

Thus, if \(A = (a_{ij}) \) is transitive, the actual ranking on \(X \) is achievable.

Definition 2 (Cavallo and D’Apuzzo, 2014)

Let \(A = (a_{ij}) \) be transitive. A positive vector \(w = (w_1, w_2, \ldots, w_n) \) is an ordinal evaluation vector for the ranking in (7) if and only if

\[
w_i > w_j \iff x_i \succ x_j \quad \text{and} \quad w_i = w_j \iff x_i \sim x_j,
\]
or, equivalently:

\[
w_i \geq w_j \iff x_i \succsim x_j.
\]

Consistent MPCMs

In an ideal situation, in which the Decision Maker is strongly coherent when stating his/her preferences, Cavallo and D’Apuzzo (2014) provide the notion of consistency for a matrix defined over an abelian linearly ordered group; by considering MPCMs, we have the following condition:

\[
a_{ij} a_{jk} = a_{ik} \quad \forall i, j, k \in \{1, 2, \ldots, n\}.
\] (13)

Under assumption of reciprocity in (2), the consistency condition in (13) implies the transitivity condition in (11) (Cavallo and D’Apuzzo, 2014) and, as a consequence, the actual ranking is established; the reverse implication does not hold (e.g. the MPCM in Example 1 is transitive but not consistent).

Brunelli and Fedrizzi (2014) analyze some inconsistency indices for MCPMs, and Chiclana et al. (2009) analyze consistency of fuzzy pairwise comparison matrices.

Example 1

Let us consider the set \(X = \{x_1, x_2, x_3, x_4\} \) and the related MPCM:

\[
A = \begin{bmatrix}
1 & 2 & 3 & 4 \\
\frac{1}{2} & 1 & 1 & 2 \\
\frac{1}{3} & 1 & 1 & 5 \\
\frac{1}{4} & \frac{1}{2} & \frac{1}{5} & 1
\end{bmatrix}.
\]
By inequality $a_{ij} > 1$, for each $j \in \{2,3,4\}$, x_i is strictly preferred to each other x_j; by equality $a_{23} = 1$, x_2 and x_3 are indifferent; by inequalities $a_{34} > 1$, x_2 and x_3 are strictly preferred to x_4. Thus, the relation \succ is transitive (i.e. $A = (a_{ij})$ is transitive) and the actual ranking on X is $x_1 \succ x_2 \sim x_3 \succ x_4$.

However, $A = (a_{ij})$ is no consistent (e.g. $a_{13} \neq a_{34}$).

The following proposition shows that the consistency condition is equivalent to the proportionality of the rows, and implies that \succeq is a simple order on the rows.

Proposition 2

The following assertions hold:

1. $A = (a_{ij})$ is consistent if and only if

 $a_{ij} = a_{il}a_{lj} \quad \forall i,j \in \{1,2,\ldots, n\};$

 (14)

2. if $A = (a_{ij})$ is consistent, then \succeq is strongly complete.

Proof.

Equation (13) is equivalent to:

$$\frac{a_{ik}}{a_{jk}} = a_{ij}, \quad \forall i,j,k \in \{1,2,\ldots, n\},$$

that is equivalent to (14).

By (14) and $a_{ij} > 0$, we have:

$$a_{ij} > 1 \Leftrightarrow a \succ a_j \quad a_{ij} = 1 \Leftrightarrow a = a_j \quad a_{ij} < 1 \Leftrightarrow a \prec a_j,$$

thus, (10) holds.

Priority vectors

In literature, several methods have been proposed to build priority vectors, that are positive vectors $w = (w_1, w_2, \ldots, w_n)$ assigning a preference order on X by means of the relations \succ and \sim defined by the following equivalences:

$$x_i \succ x_j \Leftrightarrow w_i > w_j \quad \text{and} \quad x_i \sim x_j \Leftrightarrow w_i = w_j.$$

(15)

Then, given a priority vector $w = (w_1, w_2, \ldots, w_n)$, a weighting vector (providing the weights for the decision elements x_1, x_2, \ldots, x_n) is the following one:

$$w^* = \frac{1}{\sum_{i=1}^{n} w_i} w$$

obtained by normalizing w up to 1. The vector w^* is also called priority dominance vector.
Of course, whenever \(A = (a_{ij}) \) is transitive, a priority vector is reliable if and only if \(\succ \) and \(\sim \) coincide with \(\succ \) and \(\sim \), respectively.

The most used methods for deriving priority vectors from a MPCM are the eigenvector method and the geometric or arithmetic mean (Saaty, 1977; 1980; 1986; 2008; Barzilai, 1997) that provide:

- a right positive eigenvector \(w_{\lambda_{\max}} \) associated with the greatest eigenvalue \(\lambda_{\max} \) of \(A = (a_{ij}) \), that is a positive vector solution of equation \(A w = \lambda_{\max} w \);
- the arithmetic mean vector \(w_{am} = \left(\frac{1}{n} \sum_{j=1}^{n} a_{1j}, \frac{1}{n} \sum_{j=1}^{n} a_{2j}, \ldots, \frac{1}{n} \sum_{j=1}^{n} a_{nj} \right) \);
- the geometric mean vector \(w_{gm} = \left(\prod_{j=1}^{n} a_{1j}, \prod_{j=1}^{n} a_{2j}, \ldots, \prod_{j=1}^{n} a_{nj} \right) \).

Under consistency condition in (13), \(w_{\lambda_{\max}}, w_{am} \) and \(w_{gm} \) are reliable vectors, because provide a preference order on \(X \) equal to the actual ranking. Unfortunately, condition (13) is hard to reach in real situations; thus, it may happen that \(w_{\lambda_{\max}}, w_{am} \) and \(w_{gm} \) are not reliable because they provide a preference order on \(X \) different from the actual ranking (see Example 2).

Example 2
Let us consider the MPCM in Example 1. The vectors \(w_{\lambda_{\max}} = (0.82, 0.36, 0.43, 0.15) \), with \(\lambda_{\max} = 4.177 \), \(w_{am} = (2.5, 1.12, 1.8, 0.49) \) and \(w_{gm} = (2.13, 1, 1.14, 0.4) \) provide the ranking \(x_1 \succ x_3 \succ x_2 \succ x_4 \) that does not coincide with the actual ranking; so they are not ordinal evaluation vectors.

3. Property of \(\triangleright \) ensuring reliability of priority vectors
At the light of the previous considerations, this section aims at establishing a condition stronger than transitivity, but weaker than consistency, under which \(w_{\lambda_{\max}}, w_{am} \) and \(w_{gm} \) are ordinal evaluation vectors.

Proposition 3
Let \(\triangleright \) be strongly complete. Then, the following equivalences hold:

\[
a_{ij} \succ 1 \iff a_{i} \triangleright a_{j} \quad a_{ij} = 1 \iff a_{i} = a_{j}.
\]

Proof.
Let \(a_{ij} \succ 1 = a_{ij} \). Then, \(a_{i} \neq a_{j} \) and, as \(\triangleright \) is strongly complete, we get \(a_{i} \triangleright a_{j} \). Viceversa, if \(a_{i} \triangleright a_{j} \), then \(a_{ik} > a_{jk} \) for each \(k \), in particular, for \(k = j \), we have \(a_{ij} > a_{jj} = 1 \).

Let \(a_{ij} = 1 = a_{ij} \). Then, as \(\triangleright \) is strongly complete, we get \(a_{i} = a_{j} \). Viceversa, if \(a_{i} = a_{j} \), then \(a_{ik} = a_{jk} \) for each \(k \), in particular, for \(k = j \), we have \(a_{ij} = a_{jj} = 1 \).
Theorem 1
Let \succeq be strongly complete. Then, $A = (a_y)$ is transitive and $w_{\lambda_{\text{max}}}$, w_{am} and w_{gm} are ordinal evaluation vectors for the actual ranking.

Proof.
Let $a_y > 1$ and $a_y > 1$. By Proposition 3 and transitivity of \succeq, we get $a_i \succ a_j \succ a_k$. Thus, $a_y > a_y$, for each $r \in \{1, \ldots, n\}$; in particular, for $r = k$, $a_k > a_k = 1$.
Let $a_y = 1$ and $a_y = 1$. By Proposition 3, we get $a_i = a_j = a_k$. Thus, $a_y = a_y$, for each $r \in \{1, \ldots, n\}$; in particular, for $r = k$, $a_k = a_k = 1$.
Thus, by (12), $A = (a_y)$ is transitive.

Let us denote by w_i, with $i \in \{1, \ldots, n\}$, the i-th component of the vector $w_{\lambda_{\text{max}}}$, then, by $A w_{\lambda_{\text{max}}} = \lambda_{\text{max}} w_{\lambda_{\text{max}}}$, we have:

$$w_j = \frac{1}{\lambda_{\text{max}}} \sum_{k=1}^{n} a_k w_k.$$ \hfill (16)

Let us denote by v_i and u_i, with $i \in \{1, \ldots, n\}$, the i-th component of the vectors w_{am} and w_{gm}, respectively.

Let $a_y > 1$. By Proposition 3, $a_i \succ a_j$, and as a consequence, we have:

$$\sum_{k=1}^{n} a_k \succ \sum_{k=1}^{n} a_k = \prod_{k=1}^{n} a_k \succ \prod_{k=1}^{n} a_k;$$
thus, $v_i \succ v_j$ and $u_i \succ u_j$. Moreover, as $w_i > 0$, we have:

$$\sum_{k=1}^{n} a_k w_k > \sum_{k=1}^{n} a_k w_k;$$
thus, by $\lambda_{\text{max}} > 0$ and (16), $w_i > w_j$.

Viceversa, let $v_i > v_j$ (resp. $w_i > w_j$ and $u_i > u_j$). If ad absurdum $a_y \leq 1$ then, by reciprocity, $a_y \geq 1$. Thus, by Proposition 3, we get $a_j \succeq a_j$ and, as a consequence $v_j \geq v_i$ (resp. $w_j \geq w_i$ and $u_j \geq u_i$), against the assumption.

Let $a_y = 1$. By Proposition 3, $a_i = a_i$ and, as a consequence, we have:

$$\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} a_k = \prod_{k=1}^{n} a_k = \prod_{k=1}^{n} a_k;$$
thus, $v_i = v_j$ and $u_i = u_j$. Moreover, as $w_i > 0$, we have:

$$\sum_{k=1}^{n} a_k w_k = \sum_{k=1}^{n} a_k w_k;$$
thus, by $\lambda_{\text{max}} > 0$ and (16), $w_i = w_j$.

Vice versa, let $v_i = v_j$ (resp. $w_i = w_j$ and $u_i = u_j$). If ad absurdum $a_y > 1$ or $a_y < 1$, then, by Proposition 3, $a_i \triangleright a_j$ or $a_j \triangleright a_i$ and, as a consequence $v_i > v_j$ or $v_j > v_i$ (resp. $(w_i > w_j$ or $w_j > w_i$) and $(u_i > u_j$ or $u_j > u_i$)), against the assumption.

Thus, by Definition 2, $w_{\lambda_{\text{max}}}$, w_{am} and w_{gm} are ordinal evaluation vectors for the actual ranking.

Of course, by Theorem 1 and Proposition 3, if \triangleright is strongly complete, then the following equivalence holds:

$$ (a_i \triangleright a_j \triangleright \ldots \triangleright a_n) \iff (x_i \succ x_j \succ \ldots \succ x_n). \tag{17} $$

Example 3

Let us consider the MPCM

$$ A = \begin{pmatrix}
1 & 1 & 3 & 5 \\
1 & 1 & 3 & 5 \\
\frac{1}{3} & \frac{1}{3} & 1 & 4 \\
\frac{1}{5} & \frac{1}{5} & \frac{1}{4} & 1
\end{pmatrix}. $$

R_A is totally ordered by \triangleright; indeed: $a_i = a_2 \triangleright a_3 \triangleright a_4$. Thus, the actual ranking is $x_1 \sim x_2 \succ x_3 \succ x_4$.

Let us stress that $A = (a_y)$ is no consistent because (14) is not verified (e.g. the rows a_2 and a_3 are not proportional among them).

Finally, the vectors $w_{\lambda_{\text{max}}} = (0.67, 0.67, 0.28, 0.11)$, with $\lambda_{\text{max}} = 4.097$, $w_{\text{am}} = (2.5, 2.5, 1.42, 0.41)$ and $w_{\text{gm}} = (1.97, 1.97, 0.82, 0.32)$ are ordinal evaluation vectors.

4. Conclusions and future work

We introduce a partial order \triangleright on the rows set of a Multiplicative Pairwise Comparison Matrix $A = (a_y)$; if \triangleright is a simple order, then $A = (a_y)$ is transitive and the right positive eigenvector $w_{\lambda_{\text{max}}}$, the arithmetic mean vector w_{am} and the geometric mean vector w_{gm} are ordinal evaluation vectors for the actual ranking.

The ranking on the rows, obtained by means of \triangleright, allows us to state the actual ranking on the set X of alternatives/criteria. Moreover, the condition of being \triangleright a simple order is weaker than consistency.
Our future work will be directed to investigate the existence of conditions weaker than simple order ensuring that at least one vector among \(\mathbf{w}_{\lambda_{\text{max}}} \), \(\mathbf{w}_{\lambda_{\text{min}}} \) and \(\mathbf{w}_{\text{GM}} \) is still an ordinal evaluation vector.

References

Bice Cavallo
Department of Architecture, University of Naples Federico II
Via Toledo, 402 – I-80134 Naples (Italy)
Email: bice.cavallo@unina.it
Livia D’Apuzzo
Department of Architecture, University of Naples Federico II
Via Toledo, 402 – I-80134 Naples (Italy)
Email: liviadap@unina.it

Luciano Basile
Department of Architecture, University of Naples Federico II
Via Toledo, 402 – I-80134 Naples (Italy)
Email: lubasile@unina.it