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INVESTIGATING CONDITIONS ENSURING RELIABILITY OF THE
PRIORITY VECTORS

Bice Cavallo, Livia D ’Apuzzo, Luciano Basile

Abstract

In this paper, we investigate conditions, weaker than consistency, that a pairwise
comparison matrix has to satisfy in order to ensure that priority vectors proposed in
literature are ordinal evaluation vectors for the actual ranking.

In particular, we introduce a partial order on the rows of a pairwise comparison matrix; if it
is a simple order, then the matrix is transitive, the actual ranking is easily established and
priority vectors are ordinal evaluation vectors for the actual ranking.

Keywords: pairwise comparison matrices, ordinal evaluation vectors, simple order

INDAGARE LE CONDIZIONI CHE ASSICURINO L’AFFIDABILITA DEI
VETTORI PRIORITA

Sommario

In questo articolo, analizziamo le condizioni, piu deboli della consistenza, che una matrice
di confronti a coppie dovrebbe soddisfare affinché i vettori priorita proposti in letteratura
siano vettori di valutazione ordinale.

In particolare, introduciamo una relazione di ordine parziale sulle righe di una matrice di
confronti a coppie; se tale relazione rappresenta un ordine semplice, allora la matrice ¢
transitiva, ed ¢ possibile stabilire in maniera semplice I’effettivo ordinamento e i vettori
priorita sono vettori di valutazione ordinale.

Parole chiave: matrici di confronto a coppie, vettori di valutazione ordinale, relazione di
ordine semplice
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1. Introduction

Most decision processes related to planning, territory government, technology transfer,
transportation, conflict resolution etc. involve a multiplicity of criteria and sub-objectives
(e.g. economic and social), the satisfaction of which is crucial in building the best
alternative.

The pairwise comparisons are an essential tool to establish the relative importance of
criteria or sub-objectives that are measurable in different scales. In fact, they constitute the
crucial tool of the Analytic Hierarchy Process (AHP) (Saaty, 1977, 1980, 1986, 2008), a
Multi-Criteria method introduced by Saaty (1977) for evaluating alternatives.

The AHP organizes the elements of the decision process in a hierarchy and uses the
pairwise comparisons for getting a weighted ranking of the elements of a level with respect
to an element in the upper level; then the local weights of the elements of each level are
combined to get the global weights of the alternatives.

Unfortunately, it may happen that the methods proposed in literature for obtaining weighted
rankings for alternatives/criteria are not reliable. In this paper, we focus on this problem
and propose a condition that ensures the reliability of these methods.

The paper is organized as follows: in Section 2, we introduce Multiplicative Pairwise
Comparison Matrices (MPCMs) and a partial order > on the rows of a matrix, we focus on
transitive matrices and consistent matrices and show that if a matrix is transitive, but not
consistent, then it may be that priority vectors proposed in literature are not reliable; in
Section 3, we prove that if > is a simple order, then the matrix is transitive and the priority
vectors provide reliable weighted ranking; in Section 4, we provide concluding remarks and
directions for future work.

2. Multiplicative pairwise comparison matrices and priority vectors
Let X ={x,x,,...,x,} be a set of decision elements such as criteria or alternatives and

1 a, .. a,
1 ..
A=(aij)= a, a4, (1)
anl an2 1

the related MPCM. Thus, the entry a, is a positive number that represents the preference
ratio of x; over x,:so a, =1 if and only if there is indifference between x, and X, a;>1

if and only if x, is strictly preferred to x, , whereas a, <1 expresses the reverse preference.

For an algebraic approach to pairwise comparison matrices, see Cavallo (2014), Cavallo
and D’ Apuzzo (2009, 2010, 2012, 2014) and Cavallo et al. (2012).
For MPCMs, the following condition of reciprocity:

Jt

a..:L vi,je{l,2,...,n} 2)
4
is assumed.
Under assumption of reciprocity, we set:
X, -x, & a;>1, X, ~x, =a,=1, 3)
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where x, >, and x, ~x; stand for “x, is strictly preferred to x,” and “x; and x, are

indifferent”, respectively.
Moreover, we set:

xi,éx/.<:>(xi>x/_ orx,~x)ea; 21, @)
that stands for *“x, is weakly preferred to x, .
The relation > is asymmetric, the relation ~ is reflexive and symmetric and

X, =x, 0or x,~x, or x >x Vije{l2.. .n}. (5)

The relation 7~ is strongly complete, that is:

x,Zx, or x.Zx, Vi je{l2,..,n}; (6)
thus, if 2 is a transitive relation, then 77 is a weak order (Roberts, 1979).
The transitivity of - is the minimal logical requirement and a fundamental principle that
preference relations should satisfy; the transitivity is in fact acyclic about the alternatives or
criteria ranking. If 2 is transitive, then there is a rearrangement (i, i,,---,i,) of {,2,---,n}

2"
such that:
X X

i
1

T X 7

b n

We call (7) the actual ranking on X .

Order relations on the rows set of 4=(a,)

Let a,=(a,,a,,...,a,) be the i-th row of A:(ai]_) and R, =1{qa,,qa,,...,a,} the rows set

Yoty
of A= (a,./.) . Then, we consider the following order relations:

— > the strict partial order (i.e. > is transitive and asymmetric; see Roberts, 1979) on R,
defined by:

grDQX<:>ar/,>by.,Vje{l,2,...,n}; ()
— [ the partial order (i.e. > is reflexive, antisymmetric and transitive, see (Roberts,
1979)) on R, defined by:

aa<ar>aora=a. )
We stress that if > is strongly complete, that is:

Va.,a eR, alaorala, (10)

then > is a simple order see (Roberts, 1979).

Transitive MPCMs and ordinal evaluation vectors
Cavallo and D’ Apuzzo (2014) provide the notion of transitivity for a matrix defined over an
abelian linearly ordered group; by considering MPCMs, we have the following definition:

Definition 1
A=(a,) transitive if and only

ay.Zl ajk21:>aik21' (11)
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Let A=(a,) be a reciprocal MPCM. By reciprocity, implication in (11) is equivalent to the
following implications:

ay.>1 ajk>1:>aik>1, ay:l ajk:1:>aik:1. (12)
Proposition 1
A=(a,;) is transitive if and only 7~ is a transitive relation.

Proof.
By Definition 1 and equation(4).

Thus, if 4=(a,) is transitive, the actual ranking on X' is achievable.

Definition 2 (Cavallo and D’ Apuzzo, 2014)
Let A:(ai]_) be transitive. A positive vector w=(w,,w,,...,w, ) is an ordinal evaluation

vector for the ranking in (7) if and only if
w>wW, S X - X, and w,= W, X, ~ X,
or, equivalently:
W2W Sx, X

Consistent MPCMs
In an ideal situation, in which the Decision Maker is strongly coherent when stating his/her
preferences, Cavallo and D’Apuzzo (2014) provide the notion of consistency for a matrix
defined over an abelian linearly ordered group; by considering MPCMs, we have the
following condition:

aa,=a, Vijkel{l2,. . n}. (13)

ik
Under assumption of reciprocity in (2), the consistency condition in (13) implies the
transitivity condition in (11) (Cavallo and D’Apuzzo, 2014) and, as a consequence, the
actual ranking is established; the reverse implication does not hold (e.g. the MPCM in
Example 1 is transitive but no consistent).
Brunelli and Fedrizzi (2014) analyze some inconsistency indices for MCPMs, and Chiclana
et al. (2009) analyze consistency of fuzzy pairwise comparison matrices.

Example 1
Let us consider the set X = {x,,x,,x,,x,} and the related MPCM:
1 2 3 4
1 1 1 2
2
A:
1 1 15
3
11y
4 2 5
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By inequality g, >1, for each j€{2,3,4}, x, is strictly preferred to each other x,; by
equality a,,=1, x, and x, are indifferent; by inequalities a,, >1 and a,, >1, x, and x,
are strictly preferred to x, . Thus, the relation 7 is transitive (i.e. 4= (a,) is transitive) and
the actual ranking on X is x, = x, ~x, = x, .

However, 4=(q,)is no consistent (e.g. a,,a,, #a,,).

The following proposition shows that the consistency condition is equivalent to the
proportionality of the rows, and implies that I> is a simple order on the rows.

Proposition 2
The following assertions hold:

1. A4=(a,)is consistent if and only if

a,=a.a, Vi, jel{l,2,...,n}; (14)

—i

2. if 4= (a,./.) is consistent, then > is strongly complete.

Proof.
Equation (13) is equivalent to:

L a, Vi jke{l,2,...,n},
a. v
Jk
that is equivalent to (14).
By (14) and a,> 0, we have:

a.>l<av>a a,
y - —J

g

:1<:>gi:g/. ai/.<1<:>g/.l>g.,

i

thus, (10) holds.

Priority vectors
In literature, several methods have been proposed to build priority vectors, that are positive

vectors w=(w,,w,,...,w,) assigning a preference order on X by means of the relations
>, and ~  defined by the following equivalences:

X, X, W >w, and  x, ~, X, O W =W, (15)
Then, given a priority vector w=(w,,w,,...,w,) , a weighting vector (providing the weights

for the decision elements x,,x,,...,x, ) is the following one:

obtained by normalizing w up to 1. The vector w" is also called priority dominance
vector.
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Of course, whenever 4=(a,) is transitive, a priority vector is reliable if and only if >,

and ~  coincide with >~ and ~, respectively.

The most used methods for deriving priority vectors from a MPCM are the eigenvector
method and the geometric or arithmetic mean (Saaty, 1977; 1980; 1986; 2008; Barzilai,
1997) that provide:

— a right positive eigenvector w,  associated with the greatest eigenvalued

of A=(a_), that is a positive vector solution of equation Aw=21 w;
ij — max —
1 n 1 n 1 n
— the arithmetic mean vector w = (—Za A,—Za .,...,—Za s
—am 1j 2j n
I=] = nja
n 1 n 1 n 1
— 1 — n n n
the geometric mean vector W, = (H alj,H aj.. .,H anj) .
=1 J=1 J=1
Under consistency condition in (13), w, , w _ and w,, are reliable vectors, because

provide a preference order on X equal to the actual ranking.
Unfortunately, condition (13) is hard to reach in real situations; thus, it may happen that

w, , w, and w_ = are not reliable because they provide a preference order on X

different from the actual ranking (see Example 2).

Example 2
Let us consider the MPCM in Example 1. The vectors w, =(0.82,0.36,0.43,0.15), with

A =4177,w =(25,1.12,1.8,0.49) and W, = (2.13,1,1.14,0.4) provide the ranking

x, >, x, = x,= x, that does not coincide with the actual ranking; so they are not ordinal

evaluation vectors.

3. Property of > ensuring reliability of priority vectors

At the light of the previous considerations, this section aims at establishing a condition
stronger than transitivity, but weaker than consistency, under which W, 5 W, and W,
are ordinal evaluation vectors.

Proposition 3
Let > be strongly complete. Then, the following equivalences hold:

a. >l a>a, a.=1a=a.
y - —J y - —J

Proof.
Let a,>1=a, . Then, g #a; and, as I is strongly complete, we get g, > a, . Viceversa,
if a > a then a, > a, for each k, in particular, for k= j, we have a;>a, = 1.

Let a,=1=a, . Then, as & is strongly complete, we get a,=a, . Viceversa, if g, =a,

then a, = a, for each k, in particular, for k= j, we have a,=a,= 1.
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Theorem 1

Let > be strongly complete. Then, A=(a,)is transitive andw, , w, and w, = are

‘max

ordinal evaluation vectors for the actual ranking.

Proof.

Let a,>1 and a, >1. By Proposition 3 and transitivity of >, we get a > a,>a, . Thus,

a, >a, , foreach r €{l,...,n} ; in particular, for r=%, a, >a, =1.

Let a,=1 and a, =1. By Proposition 3, we get a. =a.=a, . Thus, a_=a, , for each
ij Ji =i =J —k ir kr

refl,...,n}; in particular, for r=k, a, =a, =1.

Thus, by (12), A= (a,./.) is transitive.

Let us denote by w,, with ie{l,...,n}, the i-th component of the vectorw, , then, by

‘max

Aw, =2, w, ,wehave:
- max_lmu\'

‘max

W, :%Zaikwk. (16)

‘max k=1

Let us denote by v, and u,, with ie{l,...,n}, the i-th component of the vectors w_ and

W s respectively.

Let a,> 1. By Proposition 3, a, > a, and as a consequence, we have:

n n n n
2 a, > 2 Qs H a, > H Qs
= P k=1 k=1

thus, v, > v, and u, > u, . Moreover, as w, > 0, we have:

zaikwk > zajkwk;

k=1 k=1
thus, by 4, >0and (16),w,>w,.
Viceversa, let v, >v, (resp. w,>w, and u,>u ). If ad absurdum a, <1 then, by
reciprocity, a, 1. Thus, by Proposition 3, we get a, > a, and, as a consequence V.2V,

(resp. w, 2w, and u, 2u, ), against the assumption.

Let a, = 1. By Proposition 3, a. = a; and, as a consequence, we have:

n n n n
zaszzajk’ Haik:Hajk’
P P k=l i

thus, v, = v, and u, = u, . Moreover, as w, >0, we have:

n n
z QW = 2 au Wi
=1 =1

BDC, print ISSN 1121-2918, electronic ISSN 2284-4732 393



Vol. 14, 2/2014 Investigating conditions ensuring reliability of the priority vectors

thus, by 4, >0and (16), w,=w, .
Viceversa, let v, = v, (resp. w, = w, and u, = u, ). If ad absurdum a; >1 or a, < 1, then,
by Proposition 3, a > a, or a>a, and, as a consequence V,> v, or v, >v, (resp.

(w.>w. or w.>w)and (u. >u. or u, >u.)), against the assumption.
i J J i L J J 1

Thus, by Definition 2, w, , w = and w,, are ordinal evaluation vectors for the actual

am

ranking.

Of course, by Theorem 1 and Proposition 3, if &> is strongly complete, then the following
equivalence holds:

(g, Ba >..Da)o(x, Tx, Z...0X). 17)

Example 3
Let us consider the MPCM

1 1 35

1 1 3 5

A= l l 1 4

3 3

1 1 1

- - =1

5 5 4

R, is totally ordered by > ; indeed: g, =a, > a, > a, . Thus, the actual ranking is

X~ X, =X =X,
Let us stress that 4= (a,./.) is no consistent because (14) is not verified (e.g. the rows g, and

a, are not proportional among them).

Finally, the vectors w, =(0.67,0.67,0.28,0.11), with A, =4.097,

)'t
w, =(25,2.5,1.42,0.41) and W, = (1.97,1.97,0.82,0.32) are ordinal evaluation vectors.

4. Conclusions and future work
We introduce a partial order > on the rows set of a Multiplicative Pairwise Comparison

Matrix 4= (a,./.); if > is a simple order, then 4= (a,./.) is transitive and the right positive
eigenvector w, , the arithmetic mean vector w_— and the geometric mean vector w,, are

ordinal evaluation vectors for the actual ranking.

The ranking on the rows, obtained by means of >, allows us to state the actual ranking on
the set X of alternatives/criteria. Moreover, the condition of being > a simple order is
weaker than consistency.
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Our future work will be directed to investigate the existence of conditions weaker than
simple order ensuring that at least one vector among w, , w_ = and W, 18 still an ordinal

am

evaluation vector.
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