Changes in MicroRNAs Expression and Clinical Associations in Patients with Neuroendocrine Pancreatic Tumors

Francesca Tavano ${ }^{1}$, Fabio F di Mola ${ }^{1}$, Francesca P Burbaci ${ }^{1}$, Lucia Lombardi ${ }^{2}$, Massimiliano Copetti ${ }^{4}$, Ada Piepoli ${ }^{3}$, Angelo Andriulli ${ }^{3}$, Evaristo Maiello ${ }^{2}$, Pierluigi di Sebastiano ${ }^{1}$
${ }^{1}$ Department of Surgery, ${ }^{2}$ Division of Oncology, ${ }^{3}$ Division of Gastroenterology and ${ }^{4}$ Unit of Biostatistics, IRCCS "Casa Sollievo della Sofferenza". San Giovanni Rotondo, FG, Italy

Context In a previously study, we analyzed associations between altered expression of 13 microRNAs (miR-145, miR-23a, miR-455-3p, miR708, miR-151-5p, miR-30c, miR-let-7i, miR-199a-5p, miR-30a, miR-143, miR-21, miR-155*, and miR-31) and clinical variables in patients with pancreatic adenocarcinoma. Objective Here, expression levels of these miRNAs were analyzed to evaluate their possible associations with clinical-pathological features in patients underwent surgical resection for pancreatic neuroendocrine tumors (PETs). Methods miRNAs expression levels in tumors compared to matched-pairs non-cancerous tissue samples, were analyzed by using TaqMan MicroRNA Assay. Association analysis was performed by means of Spearman correlation coefficient and Mann-Whitney U-test. Results No significant association was found between miR-145, miR-23a, miR-455-3p, and miR-708 levels and patients sub-phenotypes. Conversely, miR-151-5p expression
was inversely correlated with age at diagnosis ($\mathrm{r}_{\mathrm{s}}=-$ $0.77, \mathrm{P}=0.009$), both miR-30a and miR-let-7i levels were positively associated with tumor size ($\mathrm{r}_{\mathrm{s}}=0.69$, $\mathrm{P}=0.027$ and $\mathrm{r}_{\mathrm{s}}=0.67, \mathrm{P}=0.034$), while over-expression of either miR-199a-5p and miR-30c was associate with male gender ($\mathrm{P}=0.046$ and $\mathrm{P}=0.003$). Further original finding was the association between miR-143, miR-21 and miR-155* levels and tumor mitotic index ($\mathrm{P}=0.04$, $\mathrm{P}=0.0002$, and $\mathrm{P}<0.0001$, respectively), while expression of both miR-31 and miR-30c was associated with tumor proliferation index ($\mathrm{P}=0.003$ and $\mathrm{P}=0.01$, respectively). In addition, miRNAs expression levels were also found to be correlated with each others in PETs tissue samples. Conclusions These data suggest a prognostic significance for specific miRNAs in PETs. Understanding the associations between miRNAs expression levels could help identify novel regulatory network involved biology of PETs.

