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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of death from cancer. Its 5-year survival rate is less than 5%. 
This poor prognosis is mostly due to the cancer’s early invasion and metastasis formation, leading to an initial diagnosis at an advanced 
incurable stage in the majority of patients. The only potentially curative treatment is radical surgical resection. The effect of current che-
motherapeutics or radiotherapy is limited. Novel therapeutic strategies are therefore much needed.
One of the hallmarks of PDAC is its abundant desmoplastic (stromal) reaction. The Hedgehog (Hh) signaling pathway is critical for em-
bryologic development of the pancreas. Aberrant Hh signaling promotes pancreatic carcinogenesis, the maintenance of the tumor micro-
environment and stromal growth. The canonical Hh-pathway in the tumor stroma has been targeted widely but has not yet lead to hopeful 
clinical results. Targeting both the tumor and its surrounding stroma through Hh pathway inhibition by also targeting non-canonical 
pathways as apparent in the tumor cell may therefore be a novel treatment strategy for PDAC.
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INTRODUCTION
Pancreatic Cancer

Pancreatic ductal adenocarcinoma (PDAC) accounts for 
more than 90% of pancreatic neoplasms. It is the fourth 
most common cause of death from cancer in the United 
States. In 2013, there were 45,220 new cases and 38,460 
estimated deaths from PDAC [1]. Most patients are incur-
able by the time they first develop symptoms. Only five to 
ten percent present with surgically resectable disease, the 
only curative treatment to date [2]. Untreated metastatic 
pancreatic cancer has a median survival of three to five 
months and six to ten months for locally advanced dis-
ease [3]. The overall median survival rate is less than six 
months, with a 5-year survival rate of less than 6% [4, 5].

Similar to colorectal cancer, pancreatic cancer develops 
through precursor lesions. The lesions display atypical 

mucinous epithelium replacing the physiological cuboi-
dal epithelium. Developmental stages range from PanIN 
1A to PanIN 3 (carcinoma in situ) [6]. These precursor 
lesions have an increase in p16 and k-ras mutations with 
more atypia. As described above, ductal adenocarcinoma 
account for 90-95% of pancreatic tumors and can occur 
anywhere in the pancreas [7]. Most occur in the pancreatic 
head. Ductal adenocarcinoma is characterized by abun-
dant fibrosis, termed desmoplasia. Perineural and vascular 
invasion are both features of invasive carcinoma. 

Seven percent of pancreatic cancers are thought to have 
some genetic background. BRCA2 mutation carriers have a 
three to five- fold (95%CI 1.9-6.6) increased risk for PDAC 
development [8]. About 95% of pancreatic cancers display 
a loss of function mutation of the tumor suppressor gene 
p16 [9]. Mutations of the Kras gene product that transduc-
es signals to the growth factor receptor are evident in more 
than 90% of ductal lesions [10]. P53, that usually controls 
the cell cycle by inhibiting entry into the S-phase, is mu-
tated in over 50 % of cases [11]. The DPC4/MADH4 gene 
product dpc4 is completely lost in 55% of infiltrating duc-
tal adenocarcinomas and cancers express CEA, mesothelin 
and p53 [7].

THE HEDGEHOG PATHWAY 
Origin

The Hedgehog pathway (Hh) was first discovered in Dro-
sophila, where it governs embryological development. 
Edward B. Lewis, Christiane Nuesslein-Volhard and Eric 
F. Wieschaus were awarded the Nobel Prize in 1995 for 
studying gene mutations in the embryogenesis of the fruit 
fly, which ultimately led to the discovery of the Hh gene [12, 
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13]. Hedgehog regulates parts of embryonic segmentation 
and patterning of adult fly appendages. It also specifies cell 
types in the dorsal epidermis [14]. 

In mammalian development there are three Hedgehog ge-
nes, e.g. Desert, Indian and Sonic Hedgehog (Dhh, Ihh and 
Shh respectively). Ihh modulates the formation of cartilage 
in the appendages and functions as a negative regulator of 
the differentiation of proliferating chondrocytes [15]. Dhh 
is associated with germ-cell proliferation, the development 
of germ cells toward the later stages of spermatogenesis, 
with interactions of nerve-Schwann cells and signaling pe-
ripheral nerve encoating [16, 17]. Sonic Hedgehog is the 
best studied among all three ligands. In vertebrate em-
bryos Shh regulates dorsal-ventral patterning of the neu-
ral tube, the anterior- posterior axis of the limb bud and 
the somites [18]. When Shh components were knocked out 
in mice, failed development of the musculature, skeleton, 
brain and GI tract resulted [19-24]. Shh is a secreted fac-
tor made by the endoderm as the gut forms [25]. It targets 
the adjacent mesoderm, which is demonstrated by high ex-
pression of the target gene Patched (Ptch) in the visceral 
mesoderm [26].  In addition, Shh establishes functions of 
gut-derived tissues. When Shh is ectopically expressed in 
the developing pancreatic epithelium, it causes the pancre-
atic mesoderm to develop into smooth muscle and intersti-
tial cells of Cajal (intestinal cells) [27].  However there is no 
effect on the endoderm of the pancreas, when Shh is mis-
expressed, supporting the hypothesis that Shh appears to 
only be a signal transducer from endoderm to mesoderm 
[26]. The Gli genes, further downstream members of the 
Hh-pathway, play important roles in limb and craniofacial 
development like eyes, nose and teeth as well as in murine 
lung embryology [28]. Section in situ hybridization of the 
murine lung revealed the highest concentration of Gli ex-
pression in the mesoderm a few nanometers away from 
the endoderm.

Hh Signaling in the Pancreas

Hh signaling in normal pancreas and in PDAC is exclusive-
ly paracrine, with expression of Shh limited to epithelium 
and response restricted to stroma [29-33]. When Smo was 
genetically silenced in the pancreatic epithelium of PDAC-
susceptible mice, development of tumors was not altered, 
suggesting that Hh signaling does not occur in an auto-
crine fashion. In paracrine signaling, tumor-derived Hh li-
gand signals locally to the stroma, and provides a selective 
growth advantage for the tumor. This paracrine model of 
Hh signaling has been established in pancreatic carcinoma 
where Hh signaling is required for tumor growth but the 
tumor cells themselves are non-responsive to Hh ligand 
[34]. Yauch et al. utilized species-specific expression profil-
ing to show that Hh pathway antagonist treatment resulted 
in downregulation of Hh target genes only in the stroma 
compartment but not within the epithelial cancer cells. 
Similiarly, Smo expression in mesenchymal cells in the 
pancreas led to Hh pathway activation. Additionally, when 
recombinant Shh was added, an increase in proliferation 
and migration in human pancreatic stellate cells (HPSC) 

was noted, whereas no change was observed in pancreatic 
cancer cells (Bxpc3 and Panc1), further supporting a para-
crine model in the tumor stroma [35].

Of note is that medulloblastoma which in one third of cases 
is characterized by an overexpression of Shh target genes, 
tends to also depict desmoplastic histology in 40 % of 
the time [36]. The tumor cells mainly produce the ligand 
Shh themselves. Additionally, the stromal cells stimulate 
the expression of the ligand Shh in the tumor cell NF-κB-
dependent [37]. Inhibition of upstream Hh- pathway mem-
bers, such as Cyclopamine, leads to stromal growth inhi-
bition [38], underlining the importance of the canonical 
pathway in tumor stroma.

The Hh-pathway promotes metastasis by increasing snail 
protein expression and reducing E-cadherin and tight junc-
tion expression. Also, Shh increases the angiogenic factor 
angiopoietin-1, decreases angiopoietin- and antiapoptotic 
genes, and increases Cyclins (D1 and B1) and proapoptotic 
genes, like Fas [39-41]. 

PDGFRα was detected strongly in aberrant crypts and mo-
derately in stroma of colorectal cancers that expressed 
Gli1. Thus, it may imply that Shh-Gli1 pathway in colo-
rectal cancers is activated through increased expression 
of PDGFRα [42]. The Sonic Hedgehog pathway also plays 
a role in repopulation of pancreatic cancer cells after ra-
diation therapy as described by Ma et al. They showed that 
irradiated tumor cells with higher Shh and Gli1 expressi-
on were associated with stronger tumor cell repopulati-
on. Moreover, the dying cells stimulated living tumor cell 
growth that could be further enhanced by Shh signaling 
agonists or recombinant N-terminal fragment of Shh and 
inhibited by Shh signaling antagonists (Cyclopamine and 
Gant 61) or knockdown by Gli1shRNA [43].

On the contrary, Lee et al. observed that Hh pathway acti-
vation caused stromal hyperplasia and reduced epithelial 
growth whereas pathway inhibition caused accelerated 
growth of epithelial elements and suppression of desmo-
plasia in Kras-driven disease in three distinct mouse mo-
dels of PDAC [33]. The authors concluded that Hedgehog 
activity controlled the balance between epithelial and mes-
enchymal growth.

Activation Modes of the Hedgehog Pathway

Studies highlight the existence of the Shh-Ptch-Smo-Gli axis 
alias canonical Hh pathway as well as growing evidence for 
non-canonical pathways that differ from the typical route.

Canonical Activation

Canonical activation is defined as a series of repressive in-
teractions which ends in Gli-mediated transcriptional re-
gulation of a variety of cellular processes (Figure 1). 

The Hh pathway is activated by secreted ligands, Sonic, De-
sert and Indian Hh. Shh precursor is a 45 kDa prepeptide, 
which is cleaved into a 20 kDa N-terminal Shh by autocata-
lytic activity. The Shh undergoes C-terminal cholesteroyla-
tion and N-terminal palmitoylation by Hedgehog acyltrans-
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ferase (Hhat) for secretion and receptor interaction [44]. 
This ligand attaches to a transmembrane receptor with 12 
membrane-spanning domains and two extracellular loops 
located on chromosome 9 called Patched1 (Ptch1), a tumor 
suppressor gene [13]. The binding inhibits the repression 
of a seven transmembrane G-coupled protein Smoothened 
(Smo), located on chromosome 7, which is inhibited by the 
Ptch1 receptor in the absence of the hedgehog ligand by 
preventing its accumulation in the primary cilium, a single 
organelle transiently formed during interphase [45]. The 
former is also inhibited by 3β-hydroxysteroid (Pro-) Vita-
min D3 that is moreover pumped by Ptch1 [46]. 

When the oncogene Smo is released, it is translocated into 
the cytoplasm where it binds to costal-2, inactivating Sup-
pressor of fused (Sufu) through an unknown mechanism 
while migrating into the primary cilium [47]. Sufu inhibits 
transportation of Gli from cytoplasm to nucleus. It stays as 
a tetra-complex with serine/threonine kinase Fused, the 
kinestin-like costal-2 and Ci (Gli) [44]. The Sufu gene lo-
cated on chromosome 10 encodes three different proteins, 
which all share the same N-terminal [48]. Sufu regulates 
both the Shh and Wnt signaling, reduces cell proliferation 
and acts as an oncogene [49]. Within the Wnt pathway 
Sufu represses β-catenin by shuttling it out of the nucle-
us, thus repressing β-catenin/Tcf-mediated transcription 
[49]. An abundant amount of Sufu inhibits Gli1-dependent 
transcription [50, 51]. The migration of Smo into the pri-
mary cilium initiates Sufu’s degradation in the protea-
somes resulting in the release of Gli2/3 into the nucleus 
[52, 53]. This leads to the activation of the transcription 
factor Glioma-associated oncogene homologue 1 (Gli1), a 
member of the Kruppel family of zinc finger transcription 
factors, located on chromosome 12 [54-56]. Gli was first 
identified by Kinzler et al. in 1987 [57]. There are three 
Gli proteins, which are orthologous to Drosophilia cubitus 
interruptus (ci) that encode both activator and repres-
sor functions [58]. Gli1 acts as a transcriptional activator 
and oncogene via its C-terminal activator domain, Gli2 is 

a composite of positive and negative regulatory domains, 
and Gli3 acts primarily as a transcriptional repressor con-
sistent of an additional N-terminal repressor domain to the 
usual zinc finger domains and c-terminal activator domain 
[59]. 

In the presence of Shh, Gli1 is transcriptionally activated; 
the phosphorylated and proteolytical ubiquitylation of 
Gli2 and Gli3 to their truncated repressor forms are inhib-
ited, thus leading to the activation of Hh target genes, such 
as Gli1, Ptch1 and Hedgehog interacting protein (Hhip), 
known to diminish ligand diffusion [43, 60]. The inhibiting 
phosphorylation is performed by protein kinase A (PKA) 
and glycogen synthase kinase 3 (GSK3). Therefore, the 
pathway is strictly regulated through a negative feedback 
mechanism in which activation leads to production of Hhip 
and Ptch proteins that function to limit Hh signaling [24, 
61]. The glycoprotein Hhip is located on chromosome 4 
and acts as an antagonist for Shh [60]. It also plays a role 
in tumor angiogenesis. It is predominantly expressed in 
endothelial cells. When Notch signaling is upregulated in 
endothelial cells of vessels during angiogenesis, Hhip is 
down regulated, which leads to up regulation of Hh-Vas-
cular-endothelial-growth factor (VEGF)-Notch signaling. 
[62]. Expression is low in gastrointestinal cancers and lung 
cancers [63]. Hhip inhibits Shh in a similar fashion as Ptch. 
Hhip, as Ptch, is activated when Shh signaling increases. A 
frequent loss of heterozygosity is seen in the chromosom-
al locus of Hhip in pancreatic cancer [60]. Generally it is 
weakly expressed in pancreatic cancer tissue and absent 
in many pancreatic cancer cell lines In the majority of pan-
creatic cancer cell lines the Hhip promoter is hypermethyl-
ated which leads to inactivity [64].

Non-Canonical Activation

It is defined as a signaling response that deviates from the 
canonical paradigm. As seen in colorectal cancer, not all 
cells express all components of the Hh pathway. Bian et al. 
characterized 25 colorectal adenocarcinoma specimens by 
in situ hybridization or immunohistochemistry for compo-
nents of the Hh-pathway (Shh, Ptch1, Gli1 and Hhip). They 
found that in some cases Ptch1 and Gli1 expression was 
not in accordance with the expression of Shh suggesting 
activation by other regulatory mechanisms [42].

Numerous mechanisms have been described (Figure 2):

1) Direct interaction of Hh signaling components with 
components of other molecular pathways [65]

2) Ligand-independent activation by component mutations

Ad 1) a) Studies have shown a connection between Ptch1 
and Cyclin B1 and D1:

Cyclin B acts as a gatekeeper in and out of M-phase during 
the cell cycle. Cyclin B binds to Cyclin-dependent-kinase1 
(Cdk1) in a concentration-dependent manner; the complex 
is called maturation promoting factor (Mpf). When S-phase 
is ending, activation of the Mpf occurs via phosphorylation 
at the activating site of the complex and mitosis is triggered 
[66]. In vitro evidence by Barnes et al. suggested that Ptch1 
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Figure 1. The Hedgehog signaling pathway.
Shh binds to the membrane protein Patched (Ptch). This leads to the 
indirect activation of Smoothened (Smo) and translocates Gli to the 
nucleus. Here the sonic hedgehog target genes like Gli, Shh and Ptch are 
expressed.
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forms a complex with Mpf measured by Immunoprecipita-
tion and therefore directly regulates cell progression into 
mitosis [67]. Christelle Adolphe et al. (2006) generated 
mice homozygous for a conditional null Ptch1 allele and 
induced the conditional ablation of Ptch1 in the skin using 
a specific promoter. Loss of Ptch1 in the basal cell compart-
ment resulted in the development of basal cell carcinoma–
like lesions within 4-16 weeks. To clarify the mechanism 
of Ptch1-induced skin cancer formation, they screened 
for regulators of the cell cycle (among others) and found 
a high rate of nuclear expression of Cyclin D1 and B1 in 
Ptch1-null tumor cells. The authors concluded that consti-
tutive Hh pathway activation promotes the nuclear trans-
location of cyclin D1 [41]. Katoh and Katoh reported that 
Gli1 also binds to consensus motifs within the promoter/
enhancer motifs MYCN, CCND1 and CCND2 genes upregu-
lating N-Myc, Cyclin D1 and Cyclin D2 and augmenting cell-
cycle progression at G1/S and G2/M phases [68].

b) Also, connections between Wnt and Hh signaling have 
been discovered. In Shh null embryos the Wnt-responsive 
gene Axin2 was analyzed. Strikingly, compared to controls, 
Axin2 expression was reduced, suggesting decreased Wnt 
signaling in the absence of Shh signaling. The authors 
found that Gli3 was responsible for this effect. When Shh 
is absent, Gli3 is processed to its repressor form Gli3R. 
Coelectroporation of Gli3R inhibited the ability of Wnt3 to 
induce a TCF-luciferase reporter plasmid, indicating an in-
hibition of the Wnt pathway by Gli3R. Further experiments 
showed that Gli3R exerted its effect by directly impeding 
β-catenin by creating a complex with Sufu [69].

c) Furthermore, Kras mutations and upregulated Hh signal-
ing are often found together in pancreatic, lung and colon 
cancers posing the question of interaction [70-72]. In vitro 
experiments proved an increase of Gli mediated luciferase 
activity in Kras-expressing HPDE cells against control. By 
inhibiting specific targets of RAS downstream effectors Ji 
et al. among others found that intercellular cross talk took 
place via the RAF/MEK/MAPK pathway [73-76]. Mouse 
models demonstrated an overexpression of Gli2 when the 
pancreas harboured an activating Kras mutation [72]. Fur-
thermore, Mills et al. identified Gli1 as downstream effec-
tor of Kras. Gli1 acts by inducing IL-6 expression, secretion, 
and promoter activity in pancreatic fibroblasts which trig-
gers STAT3 and tumor initiation  [77].

d) Johnson et al. suggested a direct regulation of Gli2 
expression through Transforming Growth Factor Beta 
1 (TGFβ) in mediating breast cancer metastasis to the 
bone [78]. More specifically Katoh and Katoh described 
a TGFβ induced Mothers against decapentaplegic homo-
log 3 (Smad3)-dependent upregulation of Gli1 and Gli2 
in human NHDF fibroblasts, HaCaT keratinocytes, and 
MDA-MB-231 breast cancer cells. The exact mechanism of 
Smad3- mediated Gli1 upregulation remains unclear. In-
tegrative genomic analyses also demonstrated that Snail/
Slug and Notch-HES/HEY signals induce transcriptional 
downregulation of Hh target genes via E-box and N-box, 
respectively. Receptor tyrosine kinase (RTK) signals via 
Phosphatidylinositol-3 Kinase bound to Proteinkinase 
B (PI3K-AKT) signaling cascade induced stabilization of 
Gli1 protein, whereas G-protein coupled receptor (GPCR) 
via Gs-PKA signaling cascade induced degradation of Gli1 
protein. So TGFβ and RTK positively regulate Gli1, whereas 
Notch and GPCR negatively regulate Gli1 [79].

e) Loss of Gli1 accelerates tumor progression through 
down-regulating FAS and FAS ligand. An in vivo study with 
a pancreatic cancer mouse model that contained p48 cre-
dependent activation of Kras and loss of tumor suppressor 
p53 and Gli1 resulted in accelerated disease as shown by 
decreased survival, body weight, fatigue and increased tu-
mor volume. Mills et al. concluded the existence of a novel 
Gli1-FASL/FAS axis [80].

Ad 2) A ligand-independent activation of the Hh-pathway 
caused by mutations in Ptch1 and Smo results in brain, 
skin and muscle tumors [81]. Fibroblast migration was 
mediated through Smo via Gi- protein signaling and activa-
tion of Rho family GTPases independent of Gli transcrip-
tional activity. Polizio et al. suggested that the regulation 
of cell motility is a ‘prototypical non – canonical response 
to Shh’ [82]. 

Hh Inhibition as a potential target in cancer 

Although the Hh-pathway is a good cancer target in theory, 
as in vitro studies have demonstrated, there have not been 
satisfying clinical results to date. 

There are a few Hedgehog pathway inhibitors tested in 
various human cancers. Most frequently targeted has been 
the Smoothened receptor. 
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Figure 2. The non- canonical Hedgehog pathway
A) Ptc forms a complex with the maturing promoting factor (Mpf), 
regulating cell progression into mitosis by inhibiting Cyclin B and D. B) 
TGF-ß up-regulates Gli1/2 through Smad-3. C) Crosstalks between the 
Wnt and Hh signaling pathways occur via Gli3-Repressorform (Gli3R), 
which inhibits  ß-Catenin via forming a complex with Sufu.D) Smo directly 
regulates cell motility via GTPases.E) Gli1 regulates FAS and FAS ligand.
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A classic representative is Cyclopamine, a corn lily-derived 
teratogenic alkaloid that antagonizes Smo. It suppresses 
the expression of Shh and of Gli1, it also leads to apopto-
sis in pancreatic cancer cells.  In addition, it inhibits tumor 
growth by decreasing angiogenesis [83]. However, the ex-
pectations were not satisfied in pancreatic cancer cell lines 
that do not show Hh signaling [84]. A number of tumors 
have been shown to be refractory due to natural and ac-
quired mutations in Smo or amplification of downstream 
effector Gli2 [78, 85].

Several small molecule inhibitors, such as RU-SKI 43, 
AZD8542, Gant 58 and 61, MS-0022, IPI-926, GDC-0449 
and LDE225 have been developed and studied.

Petrova et al. recently published a new therapeutic called 
RU-SKI 43, a small molecule inhibitor of the Hhat. It targets 
the enzyme responsible for the attachment of palmitate 
onto Shh. Palmitoylation plays a pivotal role in determi-
ning the signaling potency of Shh in cells. A missing pal-
mitoylation would lessen Shh activity. RU-SKI 43 reduced 
cancer cell proliferation of the pancreas and Gli-1 activa-
tion through Smoothened independent signaling [86]. 
Petrova et al. also established proof for inhibiting the ca-
nonical pathway rather than non-canonical signaling by 
examining a Shh-reporter cell line that produced alkaline 
phosphatase (AP) in response to Shh. Coculturing with 
cells expressing Shh and Hhat resulted in AP-production. 
AP-activity was trimmed down to original level when treat-
ed with RU-SKI 43 [87]. 

Screening of the AstraZeneca compound library using a 
Gli1 luciferase reporter assay identified AZD8542. Further 
testing detected effective inhibition of Gli1 expression in 
HSPC and human prostate stromal cell line (0.25-9.5 fold 
vs. control, p<0.05). In a colon cancer xenograft model, 
using species-specific primers, strong inhibition of Gli1 
expression was discovered only in the mouse stroma but 
not the human epithelial compartment. Relevant tumor 
growth inhibition was only seen in combined animal mod-
els where tumor cells and fibroblasts were injected [35].

Another target is the Gli-mediated gene transcription via 
Gant 61 (Gli-ANTagonist 61) and Gant 58 (NSC 136476 
and NSC 75503, respectively). Gant 61 was identified from 
a screen of cells for Gli-inhibitors [85]. Gant 61 is a hexahy-
dropyrimidine derivative, whereas Gant 58 includes a thio-
pene core with four pyridine rings [85]. They both block 
Gli-mediated transcription in the nucleus through binding 
to the 5-zinc finger Gli1 protein between zinc fingers 2 
and 3 at sites E119 and E167, independent of the Gli-DNA 
binding region, and conserved between Gli1 and Gli2 [88]. 
Gant 61 also blocks Gli1 DNA binding, probably by post-
translational modifications like phosphorylation [54]. Fu 
and colleagues published that Gant 61 inhibited cancer 
stem cell tumor growth significantly in vitro and in a NOD/
SCID/IL2R gamma null mice xenograft model. They also 
postulated that Gant 61 inhibited EMT by down-regulation 
of Snail, Slug, Zeb1 and N-cadherin and up-regulation of 
E-cadherin [89]. Guo et al. published an article about Gli-
inhibition by transfecting pancreatic cancer cell lines with 

Gli1-siRNA, which were Gli-positive and Smo-negative in 
some cases, Smo positive in others. They found inhibitory 
effects on cell proliferation in all cell lines independent of 
their Smo-status. The Gli1-siRNA group showed a signifi-
cant increase in sub- G0/G1 phase cells, indicating a block 
in cell cycle progression and an induction of apoptosis. 
Cyclin D2 and BCl-2 were indeed decreased in these cells 
[90].

Another potential anti-cancer target of the Hh pathway 
concerning Gli inhibition could be the regulated protein 
destruction of Gli. In vivo experiments in transgenic mice 
showed accumulation of Gli1 protein when silencing of 
degron Dc and Dn (two destruction signals responsible for 
proteolytic degradation of Gli) was performed. Wild-type 
Gli1 transgenic mice were born normally without detect-
able mutated Gli protein and developed BCC-like tumor le-
sions at 6-8 weeks after birth. The animals with mutant Gli 
died at birth with shallow skin ulcers throughout the body 
[91]. This reflects that altered protein accumulation can di-
rectly accelerate tumor induction, thus accelerated protein 
degradation could be a potential target in cancer.

MS-0022 (2-bromo-N-(4-(8-methylimidazo [1,2-a]pyri-
din-2-yl)phenyl)-benzamide) was identified by Strand et 
al. in 2009. It blocks the translocation of Smo to the cilia. In 
PANC-1 and SUIT-2 xenograft experiments, MS-0022 treat-
ment led to a partial response, where growth was halted 
during the first days of treatment compared to the control. 
Over time, however, both the treated and control xenograft 
groups reverted to similar growth [53]. 

Saridgib (IPI-926), is an orally applied Smo-inhibitor. One 
in vivo study tested whether the delivery and efficacy of 
gemcitabine, the standard adjuvant and first-line chemo-
therapeutic in resectable and metastatic pancreatic cancer, 
could be improved by co-administration of IPI-926.  The 
effects of Smo inhibition were measured in KOC mice after 
8-12 days of treatment with IPI-926 or gemcitabine, alo-
ne or together. They found depletion of tumor stroma in 
the IPI-926 treated group, as well as 60% more delivery 
of gemcitabine into the tumor tissue after 10 days of treat-
ment due to increases angiogenesis in the tumor. However 
the Smo-inhibitor alone did not show any effects on tumor 
cell proliferation or apoptosis. Though in combination with 
gemcibatine, a significant reduction in tumor growth and 
survival (11 days vs. 25 days (HR 95%CI 0.157 ± 0.458)) 
was shown. Interestingly, metastasis to the liver was also 
significantly reduced [92]. 

A phase II trial for saridegib and gemcitabine had to be 
stopped prematurely due to an increased mortality in the 
saridegib group [93].

GDC-0449 alias vismodegib showed a 58% response rate 
in patients with advanced basal cell carcinoma in a Phase 
I trial. However, no clinical response was observed dur-
ing the same trial, in patients with other advanced stage 
cancers, such as pancreatic cancer [94].  A recent interim 
analysis of a single-arm phase II study was reported using 
vismodegib in combination with gemcitabine and nab-pa-
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clitaxel. The overall survival was estimated at 10 months 
for 59 patients versus 8.5 months for patients that were 
treated with gemcitabine plus nab-paclitaxel [95, 96].

SUMMARY
Aberrant Hh signaling has been reported in many 
malignancies; among these pancreatic cancer has been a 
focus for researchers all over the world. Clinical trials of 
Hh inhibitors are under way in many different types of 
cancers. Despite encouraging results in in-vitro studies 
and mouse models, clinical trials have been disappointing. 
The misregulation of the Hh- pathway has been established 
in many different tumor types. Loss-of function, gene 
amplification and transcriptional upregulation of 
Shh, Ptch, and Gli1 among others are mechanisms for 
carcinogenesis in pancreatic cancer, medulloblastoma, 
glioma and lymphoma [68]. First the Hh-pathway was 
only described in cancer cells, but later the significance of 
the tumor stroma gained importance. The tumor –stroma 
interaction is complex. When Shh is missing, the stroma 
dies, while Gli is important for tumor cell growth. As said 
before, assuming the presence of the canonical pathway 
in cancer cells, targeting upstream effectors has not lead 
to the expected results. The non-canonical pathways that 
have been or have not been discovered could present 
an answer. Therefore an aim of future studies should be 
to elucidate non-canonical Hh –pathways in pancreatic 
cancer to find potential anticancer targets that target both, 
the stroma and the cancer cells.
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