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ABSTRACT 
Context Pancreatic cancer is highly resistant to treatment. Previously, we showed that Newcastle disease virus (NDV) strain 73-T 
was highly cytotoxic to a range of tumor types in vitro and in vivo but the effects of NDV on pancreatic tumors are unknown. We 
determined the cytotoxicity of the lentogenic LaSota strain of NDV (NDV-LS) toward 7 different human pancreatic tumor cell lines 
and 4 normal human cell lines (keratinocytes, fibroblasts, pancreatic ductal cells, and vascular endothelial cells). Methods 
Cytotoxicity assays used serially diluted NDV incubated for 96 hours post-infection. Cells were fixed, stained, and minimum 
cytotoxic plaque forming unit (PFU) doses were determined (n=10-24/cell line). Results Normal cells were killed only by high doses 
of NDV-LS. The cytotoxic doses for pancreatic ductal cells, fibroblasts, and vascular endothelial cells were 729, 626, and 1,217 
plaque forming units, respectively. In contrast, most pancreatic cancer cells were killed by much lower doses. The doses for PL45, 
Panc 10.05, PANC-1, BxPC3, SU.86.86, Capan-1 and CFPAC-1 were 0.15, 0.41, 0.43, 0.55, 1.30, 17.1 and 153 plaque forming 
units, respectively. Conclusions Most pancreatic tumor cells were more than 700 times more sensitive to NDV-LS killing than 
normal cells. Such avirulent, lentogenic NDV strains may have therapeutic potential in the treatment of pancreatic cancers. 
 
INTRODUCTION 
 
Pancreatic cancer has proven to be highly resistant to 
treatment. At present, the 5-year survival after 
diagnosis of pancreatic cancer is very low, about 4%. 
Clearly, novel treatment methods are needed. In 
previous studies, we showed that the mesogenic 
Newcastle disease virus (NDV) strain 73-T was highly 
cytotoxic to a variety of tumor cells both in vitro and in 
vivo but caused relatively little damage to normal cells 
[1, 2, 3, 4, 5]. However, very little is known about the 
direct effects of virulent or avirulent NDV strains on 
human pancreatic tumors. 

NDV is an enveloped negative-sense single-strand 
RNA virus in the family Paramyxoviridae and genus 
Rubulavirus [6]. Its genomic RNA contains 6 genes 
which encode 8 proteins [7]. It has been studied for 
many years due to its ability to kill a variety of types of 
human tumors with high potency and specificity. This 
selectivity is this thought to arise from the weak 
endogenous interferon response in tumor cells as 
compared to normal cells [8, 9], but NDV also acts as 
an immune stimulatory adjuvant in vivo. Although it 
can cause high morbidity and mortality in avian 
species, NDV has few harmful effects in humans 
except for self-limiting conjunctivitis and mild to 
moderate flu-like symptoms [9]. The virus also exhibits 
a low rate of spontaneous mutation, low levels of 
recombination or antigenic drift, and does not become 
integrated into host DNA [10, 11]. These features make 
NDV a particularly promising candidate for tumor 
therapy. 
Native NDV strains have been employed in animals 
and in patients as anti-tumor agents in 3 different 
modalities: 1) injection of infectious virus; 2) 
administration of virus infected oncolysate; or 3) 
infected whole cell vaccines. For direct cytolysis, live 
native mesogenic or velogenic NDV is added to cell 
cultures or injected into subjects where it infects and 
replicates in tumor cells which subsequently undergo 
apoptosis and lysis. Lentogenic NDV strains such as 
LaSota (LS), Hitchner-B1, or Ulster are seldom used in 
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this way because they are considered to be non-lytic 
and thus less likely to have direct cytolytic effects. 
Krishnamurthy et al. [12] showed that NDV-LS 
replicated efficiently in 4 different tumor cell types in 
vitro but did not describe any cytopathic effects. As a 
vaccine, lentogenic strains such as NDV-Ulster are 
often used as adjuvants to stimulate an immune 
response against tumor cells or antigens. This method 
does not require NDV replication in tumor cells or 
direct viral induced lysis of target cells [13, 14]. 
The binding of NDV to target cells does not seem to 
require a specific receptor, instead ubiquitous sialic 
acid moieties on the cell surface serve as binding sites. 
NDV cytotoxicity appears to hinge upon the formation 
of multinucleated syncytia [5]. NDV fusogenicity, both 
for virus entry into the cell and for syncytia formation, 
involves both the fusion (F) and hemagglutinin-
neuraminidase (HN) viral transmembrane proteins [15, 
16, 17]. However, NDV virulence in chicken, which is 
highly dependent on F protein primary structure, is not 
the only or even the main determinant of NDV 
fusogenicity and cytotoxicity in mammalian tumor 
cells. As a result, the range of viral strain infectivity in 
chicken (i.e., lentogenic, mesogenic, velogenic) may 
not be as relevant to direct oncolytic potential of NDV 
strains in human tumors [18]. 
The direct cytolytic effects of mesogenic and velogenic 
NDV strains (e.g., 73-T, Beaudette C, Italien, Roakin, 
MTH-68) have been reported previously [5, 14, 19, 20, 
21, 22, 23] but such highly infectious strains are 
problematic in clinical use due to possible 
unintentional release of highly infectious virus into the 
environment. As a result, avirulent lentogenic strains 
may be better alternatives for future clinical use. We 
evaluated the direct cytotoxicity of the lentogenic 
LaSota (LS) strain of NDV toward normal human cell 
lines including primary keratinocytes (HEKn), 
fibroblasts (HuFbs), immortalized pancreatic ductal 
cells (HPDE), and vascular endothelial cells (HUVEC). 
We compared this to their cytolytic effects on several 
different human pancreatic tumor cell lines (PANC-1, 
PL45, Panc 10.05, CFPAC-1, Capan-1, SU.86.86 and 
BxPC3). 
 
MATERIALS AND METHODS 
 
Virus Preparation and Cell Lines 
 
NDV LaSota strain was a kind gift from Dr. R Iorio 
(University of Massachusetts, Worcester, MA, USA). 
This stock was amplified by passage through 10-day-
old chick embryos. Three to four days after inoculation 
with 10,000 plaque forming units (PFU) of NDV, 
allantoic fluid was removed from the eggs aseptically 
and centrifuged at 13,000 g for 10 min to remove 
debris. Supernatants were divided and stored frozen at -
80°C until use. 
NDV stock was quantified using plaque assays as 
described previously [1, 2] and by hemagglutination 
(HA) assays. For plaque assays, monolayers of 
spontaneously transformed embryonic chicken 
fibroblasts (UMNSAH/DF-1) were cultured in 48-well 

plates with DMEM plus 10% fetal calf serum until 
confluence was attained. Serial 5-fold or 10-fold 
dilutions of virus-containing stocks were added to 
monolayers and, after 4 days of incubation at 37°C in a 
5% CO2 incubator, cell monolayers were fixed with 
100% methanol and stained with 0.2% crystal violet [1, 
2]. For time course studies of cytotoxicity, cells were 
incubated with virus for 1, 2, 3, 4, 5, or 6 days after 
which time monolayers were fixed and stained. One 
plaque forming unit (PFU) was defined as the amount 
of NDV required to kill all cells in a well containing 
confluent chicken fibroblasts after 4 days of 
incubation. 
 
Hemagglutination (HA) Assay  
The HA titer of NDV suspensions was determined by 
end point dilution of erythrocyte agglutination. 
Chicken erythrocytes (Rockland Biologicals, 
Gilbertsville, PA, USA) in Alsever’s solution were 
washed 3 times in PBS and resuspended at a 
concentration of 5x107 cells/mL. Briefly, PBS (25 µL) 
was added to duplicate sets of wells in 96-well round 
bottom microtiter plates and 1/10 diluted NDV-LS in 
allantoic fluid (25 µL) was placed into the first pair of 
wells and then diluted by 2-fold serial dilutions. Next, 
25 µL of PBS were added to each well. Finally, 25 µL 
of RBCs were added, plates were incubated at either 
room temperature or 4°C for 60 min. Plates were then 
assessed for hemagglutination and photographed [24, 
25]. 
 
Cell Lines and Culture Conditions  
Spontaneously transformed embryonic chicken 
fibroblasts (UMNSAH/DF-1, ATCC, Manassas, VA, 
USA) were grown in DMEM plus 10% fetal calf serum 
(FCS). Normal primary human keratinocytes derived 
from preputial skin of neonatal males (HEKn; 
Clonetics, San Diego, CA, USA) were used at passages 
ranging from 4 to 15. They were grown in EpiLife with 
calcium, bovine pituitary extract, and EGF. Normal 
primary human fibroblasts derived from preputial skin 
of adolescent males (HuFb), were adapted to culture, 
used at passages ranging from 7 to 20, and grown in 
DMEM plus 10% FCS. Normal human vascular 
endothelial cells (HUVEC) were maintained in 
Medium 200 plus low serum growth supplement 
(LSGS; Invitrogen, Carlsbad, CA, USA) and used at 
early passages. The immortalized human pancreatic 
ductal cell line, HPDE6-E6E7-c7 (HPDE), was the 
kind gift of Dr. MS Tsao (Ontario Cancer Institute, 
Toronto, Canada). This cell line was originally derived 
from human pancreatic ductal epithelium that had been 
transfected in vitro with the E6 and E7 genes from 
human papilloma virus 16 effectively immortalizing 
the cell line. These cells were shown to be 
phenotypically and functionally very similar to normal 
pancreatic ductal epithelium and, in terms of gene 
expression, were also similar to normal pancreatic 
epithelium [26, 27]. 
PANC-1 and SU.86.86 pancreatic epithelial carcinoma, 
PL45 and CFPAC-1 pancreatic ductal adenocarcinoma, 
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and BxPC3, Capan-1, and Panc 10.05 pancreatic 
adenocarcinoma were obtained from ATCC (Manassas, 
VA, USA). PANC-1 and PL45 were cultured in 
DMEM with 10% FCS. SU.86.86 and BxPC3 were 
grown in RPMI-1640 with 10% FCS. Panc 10.05 cells 
were grown in RPMI-1640 containing 1 mM pyruvate, 
0.23 U/mL human insulin, and 15% FCS. CFPAC-1 
and Capan-1, both of which express CFTR, the cystic 
fibrosis transmembrane regulator, were grown in 
Iscove DMEM with 10% or 20% FCS, respectively. 
All media contained 50 units/mL penicillin and 50 
µg/mL streptomycin sulfate. 
 
Cytotoxicity Assays 
 
To determine the optimal duration for cytotoxicity 
assays using mammalian cells, the time course for the 
effect was evaluated. Cells were exposed to NDV-LS 
for 1 to 6 days and cytotoxicity was assessed each day 
as described below. Simple cytotoxicity assays were 
performed as described previously with minor 
variations [1]. Briefly, each cell line was plated into 
48-well plates with fully supplemented media. When 
the cells had grown to confluence, medium was 
aspirated and DMEM was added to all wells. NDV was 
then added and serial 5-fold or 10-fold dilutions were 
performed. After allowing 60 min for virus adhesion at 
37°C, media containing non-adherent virus was 
aspirated and replaced with fresh DMEM 
supplemented with antibiotics. After 1-6 days of 
incubation at 37°C in an atmosphere of 5% CO2 plus 
95% air, culture medium was removed, cell 
monolayers were fixed with 100% methanol and 
stained with 0.2% crystal violet in 50% methanol. 
Acetylated trypsin (2.5 µg/mL, final) was added to the 
culture medium for many experiments during the 4 day 
post-infection incubation period. Acetylated trypsin is 
stable for extended periods in culture media at 
physiological temperatures and is capable of activating 
any NDV-LS virus progeny that may be released from 
infected cells [25]. The concentration of acetylated 
trypsin was determined in preliminary experiments 
using a range of trypsin concentrations. The highest 
trypsin concentration at which no effects on culture 
morphology or cell survival occurred was chosen for 
all subsequent experiments (2.5 µg/mL, final; data not  
 

shown). Human keratinocytes were exquisitely 
sensitive to trypsin such that any trace of this enzyme 
in the media proved to be cytotoxic. 
 
STATISTICS 
 
For each experiment, the lowest virus dose that still 
resulted in the lysis of most or all cells in a given well 
was recorded. This ‘minimum cytotoxic dose’ was then 
used to characterize each cell line and virus strain. 
Between 10 and 24 repetitions (n) of these cytotoxicity 
determinations were performed for each cell type. Non-
parametric statistics were applied. Wilcoxon matched-
pairs tests were used to compare the effects of 
acetylated trypsin (AT) on cytotoxicity and Kruskal-
Wallis ANOVA was used to evaluate the differences 
between CF and non-CF patient derived pancreatic 
cancer cell lines.  
Due to the prevailing hypothesis that the presence of 
AT or some other protease is necessary for full activity 
or cytotoxicity of NDV, one-tailed tests were used for 
evaluating the effects of AT while two-tailed tests were 
chosen for the other analyses. Descriptive statistics 
(mean±SEM) were obtained and groups were 
compared by using the Kruskal-Wallis ANOVA with 
Dunn’s multiple comparison tests using Prism 3.03 
software (GraphPad, San Diego, CA, USA). P values 
less than 0.05 were considered statistically significant. 
 
RESULTS 
 
Hemagglutination Assays and PFU Determination 
in Diploid Chicken Fibroblasts 
 
Hemagglutination assays showed that the NDV-LS 
stock suspension contained 102,400 to 204,800 HA 
units/mL (Figure 1). Confluent chicken fibroblasts 
exposed to NDV-LS serially diluted by factors of 5 or 
10 and then incubated for 4 days showed complete 
cytotoxicity even at extreme dilutions of stock virus 
suspension. The greatest dilution at which complete 
killing occurred was used to establish PFU equal to 1 
(n=22). This dilution corresponded to 1.9 to 3.9 E-3 
HA units of NDV-LS stock. 
 

Figure 1. Photograph of a hemagglutinin assay plate for NDV-LS. 
The HA titer was determined as described in the Methods section.
Two-fold serial dilutions of NDV-LS stock were added to the wells
in duplicate in a microtiter plate. The greatest dilution in which
erythrocyte agglutination still occurred was either 1/2,560 or 1/5,120. 
This represents 102,400-204,800 HA units/mL. 

Figure 2. Time course for cytotoxicity caused by NDV-LS in 
SU.86.86 and BxPC3 pancreatic cancer cells. Most cell killing 
induced by NDV-LS occurred by day 4 post-infection in both cell 
lines. 
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Time Course of NDV-LS Cytotoxicity 
 
Time course studies (n=6) showed that most cell killing 
occurred by day 4 of exposure to NDV-LS for 
SU.86.86 and BxPC3 cells (Figure 2). Other cell lines 
responded similarly (data not shown), so 4 days post-
exposure was used as the terminus for all subsequent 
experiments. 
 
Acetylated Trypsin Increased NDV-LS Cytotoxicity 
 
For most pancreatic cancer cell lines, the inclusion of 
acetylated trypsin in culture media decreased the 

amount of NDV required for cytotoxicity by factors of 
1.3- to 5.6-fold although extensive killing occurred in 
the absence of added acetylated trypsin (Figure 3ab). 
On average, with acetylated trypsin the minimum 
cytotoxic dose of NDV-LS in all pancreatic cancer 
lines studied was decreased by half (P<0.001, 
Wilcoxon matched-pairs test). Similarly, the cytotoxic 
dose with or without acetylated trypsin in normal 
control lines was decreased by 64% (P<0.001, 
Wilcoxon matched-pairs test). 
 
NDV-LS Was Cytotoxic for Normal Diploid Human 
Cells Only at High Doses 
 
NDV-LS was cytotoxic toward normal human cells 
(Figures 4 and 5) but only at relatively high PFU levels 
(with acetylated trypsin: 252 to 729; without acetylated 
trypsin: 1,058 to 2,173). Without acetylated trypsin, 
normal diploid HuFb and HEKn cultures required very 
high levels of NDV-LS (mean PFU±SEM: 2,173±359 
and 1,771±439, respectively) to induce complete 
cytotoxicity. Without acetylated trypsin, HPDE and 
HUVEC cells also required high NDV-LS doses 
(PFU±SEM: 1,058±194 and 1,217±209, respectively) 
for cytotoxicity. With acetylated trypsin, complete 
cytotoxicity was seen in HPDE, HuFb, and HUVEC 
cells with 729±255, 626±143, and 252±71 PFU, 
respectively. UV-irradiated NDV-LS was cytotoxic for 
normal and pancreatic cancer lines only at PFU levels 
exceeding 50,000 (Figure 5). 
 
NDV-LS Was Cytotoxic for Most Pancreatic Tumor 
Cell Lines at Low Doses 
 
NDV-LS was cytotoxic toward most pancreatic cancer 
cell lines (Figures 6 and 7) at much lower PFU levels 

Figure 3. The minimum cytotoxic dose of NDV-LS required for
normal human cells (a.) or pancreatic cancer cells (b.) cultured with
(+) or without (-) acetylated trypsin (AT). The bars represent
means±SEM. With acetylated trypsin, the minimum cytotoxic dose
of NDV-LS in all pancreatic cancer lines studied was decreased by
half (P<0.001, Wilcoxon matched-pairs test). Similarly, the cytotoxic
dose with or without acetylated trypsin in normal control lines was
decreased by 64% (P<0.001, Wilcoxon matched-pairs test). Without
acetylated trypsin, HPDE or HuFb or HPDE or HEKn cells (n=10,
15, 11, 10, respectively) were significantly less sensitive to NDV-LS 
cytotoxicity as compared to Panc 10.05, PL45, PANC-1, SU.86.86,
or BxPC3 cells (P<0.01, Kruskal-Wallis with Dunn’s multiple 
comparison tests; n=16, 14, 24, 15, 12, respectively). 

Figure 4. Scatterplot of NDV-LS cytotoxicity in normal control 
human cell lines in the presence of acetylated trypsin (n ranged from 
10 to 19). The mean minimum cytotoxic doses for each cell type 
were high (ranging from 252 to 729) and are shown as horizontal 
lines here. HEKn cells were killed by acetylated trypsin alone so 
NDV cytotoxicity could not be determined in its presence. 
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(with acetylated trypsin, ranging from 0.15 to 1.3) than 
those seen for normal cells. With acetylated trypsin, 
means±SEM for minimum cytotoxic NDV dose with 
Panc 10.05, PL45, PANC-1, SU86.86, and BxPC3 
were 0.41±0.13, 0.15±0.03, 0.43±0.13, 1.30±0.61, and 
0.55±0.24, respectively. Without acetylated trypsin, 
these values were somewhat higher at 0.70±0.16, 
0.19±0.04, 0.74±0.16, 3.4±0.94, and 3.1±1.0, 
respectively. 
With acetylated trypsin, HPDE or HuFb cells were 
significantly less sensitive (P<0.001, Kruskal-Wallis 
with Dunn’s multiple comparison tests) to killing than 
were Panc 10.05, PL45, PANC-1, SU.86.86, or BxPC3 
cells. HUVEC cells were also significantly less 
sensitive (P<0.01 Kruskal-Wallis with Dunn’s multiple 
comparison tests) to killing than were Panc 10.05, 
PANC-1, or PL45 cells. Without acetylated trypsin, 
HPDE or HuFb or HPDE or HEKn cells were 
significantly less sensitive to NDV-LS cytotoxicity as 
compared to Panc 10.05, PL45, PANC-1, SU.86.86, or 
BxPC3 cells (P<0.01, Kruskal-Wallis with Dunn’s 
multiple comparison tests). 
Pancreatic cancer cell lines derived from cystic fibrosis 
patients (Capan-1 and CFPAC-1) were noticeably less 
sensitive to killing by NDV-LS. The mean minimum 
PFU±SEM for these cell types was 17±7 and 153±24, 
respectively with acetylated trypsin and 15±3 and 
422±111, respectively without acetylated trypsin. 
Tumor lines derived from patients with cystic fibrosis 
were significantly less sensitive (P<0.001, Kruskal-
Wallis test) to killing by NDV-LS than were other 

pancreatic tumor lines either with or without acetylated 
trypsin. 
 
DISCUSSION 
 
Normal human cells were killed only by relatively high 
doses of NDV-LS. This was seen in normal diploid 
human keratinocytes, fibroblasts, and vascular 
endothelial cells as well as pancreatic ductal epithelial 
cells. In contrast, all non-CF pancreatic cancer cell 
types studied here were killed by much lower NDV 
doses ranging from 194- to 11,437-fold less virus. In 
contrast, pancreatic tumor cell lines derived from 
patients with CF showed significantly elevated 
resistance to NDV-LS cytotoxicity (ranging from 1.6- 
to 148-fold less virus than normal cells) compared to 
other pancreatic cancer cell lines. This resistance may 
reflect membrane related changes due to mutations in 
the CF transmembrane conductance regulator gene or 
alterations in the intracellular ionic milieu induced by 
the regulator. This resistance to NDV killing exhibited 
by CF patient-derived tumors may be an important 
consideration in future clinical trials involving NDV. 

Figure 5. Photographs of multiwell plates stained with crystal violet
showing NDV-LS cytotoxicity in normal human cell lines. In
duplicate rows of wells, unstained wells represent those in which
total cytotoxicity and lysis had occurred. The far left well in each
row was a negative control that received no NDV. Asterisks (*) mark 
the wells where the minimum cytotoxic dose of NDV was seen for
HuFbs, HEKn, HUVEC, HPDE cultures. Acetylated trypsin had been
present in all wells shown except those containing HEKn cells. Even
at 50,000 PFU, UV-inactivated NDV-LS had little effect on HUVEC 
cell viability. 

Figure 6. Scatterplot of NDV-LS cytotoxicity in human pancreatic 
cancer cell lines in the presence of acetylated trypsin (n=13 to 17). 
The mean minimum cytotoxic doses for each cell type were low 
(ranging from 0.15 to 152) and are shown as horizontal lines here. 
Tumor lines derived from patients with cystic fibrosis (CFPAC-1 and 
Capan-1) were significantly less sensitive (P<0.001, Kruskal-Wallis 
test) to killing by NDV-LS than were other pancreatic tumor lines 
either with or without acetylated trypsin. With acetylated trypsin, 
HPDE or HuFb cells were significantly less sensitive (P<0.001, 
Kruskal-Wallis with Dunn’s multiple comparison tests) to killing 
than were Panc 10.05, PL45, PANC-1, SU.86.86, or BxPC3 cells. 
HUVEC cells were also significantly less sensitive (P<0.01 Kruskal-
Wallis with Dunn’s multiple comparison tests) to killing than were 
Panc 10.05, PANC-1, or PL45 cells. Without acetylated trypsin, 
HPDE or HuFb or HPDE or HEKn cells were significantly less 
sensitive to NDV-LS cytotoxicity as compared to Panc 10.05, PL45, 
PANC-1, SU.86.86, or BxPC3 cells (P<0.01, Kruskal-Wallis with 
Dunn’s multiple comparison tests). 
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UV-inactivated NDV was mildly cytotoxic for tumor 
cells, but only at very high doses (PFU greater than 
50,000). A similar effect has been described previously 
for 73-T and other strains of NDV [1, 2, 3, 5, 28]. UV-
inactivated NDV is still capable of binding to cells and, 
when present in large amounts, will promote cell fusion 
and the formation of multinucleated cells which 
subsequently die. Exogenously added acetylated 
trypsin increased the cytotoxicity of NDV-LS by 
factors of 1.3- to 5.6-fold, but very high levels of 
cytotoxicity for pancreatic tumor cells were seen in its 
absence. This suggests that NDV-LS may replicate to 
yield infectious virus in the absence of acetylated 
trypsin or that the fully activated form of the virus is 
not necessary to achieve potent cytotoxicity in 
pancreatic tumors. Viral activation could be 
accomplished by endogenous pancreatic enzymes that 
cleave the viral F protein to generate the highly 
infectious form of the F protein. Finally, the rate of cell 
proliferation or doubling time for each cell line was 
unrelated to the amount of NDV-LS required for 
cytotoxicity (Figure 8). 
Several NDV strains (MTH-68, 73-T, Ulster, PV701, 
HUJ) have been shown to be cytotoxic for a range of 
classes of human tumors and, in clinical studies, some 
have shown promise for treating a variety of tumor 

types. Strain MTH-68 has been shown to have 
beneficial effects in glioma, astrocytoma, and various 
advanced cancers [29, 30, 31], 73-T in sarcomas, 
carcinomas, and melanomas [1, 2, 3, 4, 5, 14, 20, 32, 
33, 34]; PV701 in various advanced solid tumors [9, 
35, 36, 37], HUJ in glioblastoma and lung tumors [38, 
39, 40], and Ulster strain in melanoma, breast, and 
gastrointestinal tumors [41, 42, 43, 44]. Some of these 
NDV strains have been used primarily as immune 
adjuvants (Ulster by Schirrmacher et al. [41, 42, 43, 
45]; 73-T by Cassel et al. [33, 34, 46]; MTH-68 by 
Csatary et al. [30, 47]). On the other hand, some of 
these strains can exert effects via direct cytolytic 
activity toward tumor cells (e.g., 73-T [1, 2, 3, 5, 19, 
20, 48]; PV701 [9, 35, 36]; HUJ [39, 40]; MTH-68 [49, 
50, 51]). 
However, the susceptibility of pancreatic tumors or 
tumor cells to NDV has been studied only to a very 
limited extent. In a phase I clinical trial using PV701, 
Pecora et al. [35] studied 9 primary pancreatic 
carcinoma patients of which 1 or 2 showed measurable 
tumor size reductions. Zamarin et al. [52] showed that 
the lentogenic Hitchner-B1 strain of NDV could cause 
a 50% decrease in cell survival in PANC-1 cells but no 
decrease in MIA PaCa-2 cell survival after 3 days in 
vitro. In 2007, Fabian et al. [53] showed that the 
mesogenic NDV strain MTH-68/H was highly 
cytotoxic for PANC-1 cells. Schirrmacher et al. [13] 
also reported that Ulster strain could infect and 
replicate in 2 established human pancreatic cancer cell 
lines and in more than 10 primary tumor explants in 
vitro and Jarahian et al. [54] found that PANC-1 cells 
infected with NDV-Ulster were killed more efficiently 
by NK cells. In 2003, Liang et al. [55] reported disease 
stabilization in one patient with pancreatic head cancer 
treated with NDV-LaSota IV strain as a vaccine. These 
reports offer some optimism regarding the potential for 
NDV efficacy in the treatment of pancreatic 
neoplasms. 

Figure 7. Photographs of multiwell plates stained with crystal violet
showing NDV-LS cytotoxicity in pancreatic cancer cell lines.
Unstained wells represent those in which total cytotoxicity and lysis
had occurred. The far left well in each row was a negative control
that received no NDV. Asterisks (*) mark the wells where the
minimum cytotoxic dose of NDV was seen for PANC-1, BxPC3, 
SU.86.86, PL45, Capan-1, Panc 10.05, and CFPAC-1 cultures.
Acetylated trypsin had been present in all wells shown. At 50,000
PFU, UV-inactivated NDV-LS had little effect on PL45 cell
viability. 

Figure 8. Minimum cytotoxic dose of NDV-LS for each pancreatic 
cancer cell type plotted against the doubling time for each cell type. 
There is no relationship apparent between the doubling time and the 
sensitivity of these cell types to NDV killing. 
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Lentogenic NDV strains such as NDV-LS have been 
studied mainly as immune adjuvants in infected tumor 
cell vaccines or oncolysates rather than for any direct 
tumor cytotoxicity [41, 42, 43, 44, 45, 55, 56, 57, 58]. 
It is often assumed that these lentogenic strains would 
have poor tumor cytotoxicity due to their low 
infectivity and lysogenicity in chickens. This low 
infectivity is determined by the primary amino acid 
sequence of the F protein of NDV which contains few 
basic amino acid residues in the critical 395-403 
positions. Such lentogenic strains must be activated by 
exogenous trypsin-like proteases such as those found in 
allantoic fluid or in the gastrointestinal tract to obtain 
infectious virus in chickens [59, 60]. Thus, activated 
NDV-LS is expected to undergo only a single round of 
infection in human tumor cells unless appropriate 
protease activation of progeny virus particles occurs. If 
this had been to occur, increased virus infectivity of 
otherwise weakly infectious virus might be elicited. 
We have shown that even lentogenic NDV-LS, which 
is poorly infectious in chicken, is highly cytolytic for 
human pancreatic tumor cells and highly specific for 
tumor versus normal human cells. Further, the 
inclusion of acetylated trypsin together with the NDV-
LS resulted in a modest but significant increase in 
cytotoxicity suggesting that NDV-LS is highly 
cytotoxic to pancreatic tumor cells even in the absence 
of F protein activation by exogenous trypsin. In 
chicken, NDV may be viscerotropic or neurotropic 
depending on the strain [61, 62, 63]. Most lentogenic 
strains are viscerotropic having a marked propensity to 
infect enteric organs. The Hitchner-B1 and LaSota 
strains are often used as bird vaccines to protect against 
velogenic strains of NDV and typically proliferate most 
efficiently in the respiratory and gastrointestinal tracts 
[16, 64]. This may be related to the presence of 
proteases in these locations that cleave the NDV fusion 
protein thereby increasing the infectivity of the virus 
[65, 66]. This predilection for the GI tract, the potential 
for NDV-LS activation there, and its high level of 
differential cytotoxicity toward pancreatic tumor cells 
in vitro may make this lentogenic strain of NDV 
particularly useful in the treatment of pancreatic 
cancer. 
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