This Special Issue intended to wonder about the new challenges for sustainable urban mobility, aligning with the European Sustainable & Smart Mobility Strategy. Contributions come from selected papers of the XXVI International Conference “Living and Walking in Cities” and have been collected around two main topics: the relationship between transport systems and pedestrian mobility and the transformative potential of temporary urban changes. Reflections and suggestions elaborated underline a collective great leap forward to reshaping urban mobility paradigms.

TeMA is the Journal of Land Use, Mobility and Environment. The Journal publishes papers which adopt unified approach to planning, mobility and environmental sustainability. With the ANVUR resolution of April 2020, TeMA Journal and the articles published from 2016 have been included in the A category of scientific journals. The articles published on TeMA are part of the Core Collection of Web of Science, since 2015, and of Scopus database, since 2023. The journal is in the Sarc Europe Seal of Open Access Journals and the Directory of Open Access Journals.
Living and walking in cities: new challenges for sustainable urban mobility
TeMA. Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include: engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science and complex systems.

With ANVUR resolution of April 2020, TeMA Journal and the articles published from 2016 are included in A category of scientific journals. The articles published on TeMA are included in main international scientific database as Scopus (from 2023), Web of Science (from 2015) and the Directory of Open Access Journals (DOAJ). TeMA Journal has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe). TeMA is published under a Creative Commons Attribution 4.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR-IN-CHIEF
Rocco Papa, University of Naples Federico II, Italy

EDITORIAL ADVISORY BOARD
Mir Ali, University of Illinois, USA
Luca Bertolini, University of Amsterdam, Netherlands
Luuk Boelens, Ghent University, Belgium
Dino Borri, Politecnico di Bari, Italy
Enrique Calderon, Technical University of Madrid, Spain
Pierluigi Coppola, Politecnico di Milano, Italy
Derrick De Kerckhove, University of Toronto, Canada
Mark Deakin, Edinburgh Napier University, Scotland
Carmela Gargiulo, University of Naples Federico II, Italy
Aharon Kellerman, University of Haifa, Israel
Nicos Komninos, Aristotle University of Thessaloniki, Greece
David Matthew Levinson, University of Minnesota, USA
Paolo Malanima, Magna Graecia University of Catanzaro, Italy
Agostino Nuzzolo, Tor Vergata University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Serge Salat, UMCS Institute, France
Mattheos Santamouris, NK University of Athens, Greece
Ali Soltani, Shiraz University, Iran

ASSOCIATE EDITORS
Rosaria Battarra, CNR, Italy
Matteo Caglioni, Università Cote D’azur, France
Alessia Calafiori, University of Edinburgh, UK
Gerardo Carpentieri, University of Naples Federico II, Italy
Luigi dell’Olio, University of Cantabria, Spain
Isidoro Fasolino, University of Salerno, Italy
Romano Fistola, University of Naples Federico II, Italy
Stefano Franco, Politecnico di Bari, Italy
Federica Gablione, University of Sannio, Italy
Carmen Guida, University of Naples Federico II, Italy
Thomas Hartmann, Utrecht University, Netherlands
Markus Hesse, University of Luxemburg, Luxemburg
Zhanyat Idrisheva, D. Serikbayev EKTU, Kazakhstan
Zhadyra Konurbayeva, D. Serikbayev EKTU, Kazakhstan
Seda Kundak, Technical University of Istanbul, Turkey
Rosa Anna La Rocca, University of Naples Federico II, Italy
Houshmand Ebrahimpour Masoumi, TU of Berlin, Germany
Giuseppe Mazzeo, Pegaso Telematic University, Italy
Nicola Morelli, Aalborg University, Denmark
Enrica Papa, University of Westminster, United Kingdom
Yolanda Pena Boquete, AYeconomics Research Centre, Spain
Dorina Pojani, University of Queensland, Australia
Nailiya Saifulina, University of Santiago de Compostela, Spain
John Zacharias, Peking University, China
Cecilia Zecca, Royal College of Art, UK
Floriana Zucaro, University of Naples Federico II, Italy

EDITORIAL STAFF
Gennaro Angiello, Ph.D. at University of Naples Federico II, Systemica, Bruxelles, Belgium
Annunziata D’Amico, Ph.D. student at University of Naples Federico II, Italy
Valerio Martinelli, Ph.D. student at University of Naples Federico II, Italy
Stella Pennino, Ph.D. student at University of Naples Federico II, Italy
Tonia Stiuso, Research fellowship at University of Naples Federico II, Italy
TeMA Journal of Land Use, Mobility and Environment

Special Issue 3.2024

Living and walking in cities: new challenges for sustainable urban mobility

Contents

3 EDITORIAL PREFACE
Michela Tiboni, Martina Carra, Gerardo Carpentieri, Carmela Gargiulo, Giulio Maternini, Michele Pezzagno, Maurizio Tira

7 Mobility, participation and sustainable regeneration. Urban projects in Liguria Region
Ilenia Spadaro, Francesca Pirlone

23 Urban and transport planning integration. A case study in a mid-size city in Italy
Michelangelo Fusi, Michela Tiboni

43 Methodologies for estimating emissions from road transport and comparison with the inventory air emissions (INEMAR). The case of Pavia Province
Marilisa Moretti, Roberto De Lotto

53 A smart and active mobility assessment protocol for urban regeneration. Application to regeneration projects of medium-sized cities in Emilia-Romagna
Gloria Pellicelli, Silvia Rossetti, Michele Zazzi

67 Assessment of urban green spaces proximity to develop the green infrastructure strategy. An Italian case study
Monica Pantaloni, Francesco Botticini, Giovanni Marinelli

83 Role of new technologies on pedestrian walking behaviour research
Araf Öykü Türken, Elisa Conticelli
Coastal roads atlas. Reshaping daily infrastructures for coastline adaptation
Chiara Nifosì, Federico De Angelis, Rawad Choubassi, Andrea Gorrini, Federico Messa

Evaluating active mobility: enhancing the framework for social sustainability
Giuseppe Rainieri, Martina Carra, Anna Richiedei, Michele Pezzagno

Redesigning “schools squares” for a public city
Federica Bianchi, Rossella Moscarelli

Towards more walkable streets. An assessment method applied to school areas in Parma
Silvia Rossetti, Barbara Caselli, Vincenza Torrisi

Permanently temporary. Street experiments in the Torino Mobility Lab project
Luca Staricco, Ersilia Verlinghieri, Elisabetta Vitale Brovarone

The exploration of tactical urbanism as a strategy for adapting to climate change. The “SpaziAttivi” program in the city of Brescia
Stefania Boglietti, Michela Nota, Michela Tiboni

Urban forms interpretation for the car-era spaces reuse. A comparison of walking, automobile, and sustainable cities
Alessia Guaiani

Capturing city-transport interactions. An analysis on the urban rail network of Palermo (Italy)
Elif Sezer, João Igreja, Ignazio Vinci

Assessing mobility in sustainable urban regeneration. The GBC Quartieri application to Le Albere neighbourhood in Trento
Elena Mazzola, Alessandro Bove
Towards more walkable streets. An assessment method applied to school areas in Parma

Silvia Rossetti a*, Barbara Caselli b, Vincenza Torrisi c

a DIA – Department of Engineering and Architecture
University of Parma, Parma, Italy
e-mail: silvia.rossetti@unipr.it
ORCID: https://orcid.org/0000-0002-3358-2129
* Corresponding author

b DIA – Department of Engineering and Architecture
University of Parma, Parma, Italy
e-mail: barbara.caselli@unipr.it
ORCID: https://orcid.org/0000-0002-3236-8681

c Department of Electric, Electronic and Computer Engineering, University of Catania, Catania, Italy
e-mail: vincenza.torrisi@unict.it
ORCID: https://orcid.org/0000-0001-9332-4212

Abstract
It is well known that urban areas near schools are often characterised by excessive motorised traffic, making access to school facilities difficult and dangerous on foot, especially for children. Increasing walkability of these areas can indeed lead to multiple benefits: safer streets, cleaner air, a more pleasant public space that encourages social uses and the adoption of healthier lifestyles. For these reasons, scientific literature has recently focused on school streets/squares, and their possible regeneration, also through tactical urbanism. Even Italian legislation have recently introduced the concept of “school zones”.

Methods and tools are, therefore, needed to delimitate these zones and assess their walkability and quality to select appropriate interventions.

Within this framework, the paper applies a GIS-based methodology to calculate a School Walkability Index (SWI), providing a score for catchment areas around schools. The method is applied in the 3-, 10- and 15-minute pedestrian isochrones around primary schools in Parma. Data to perform the walkability assessment have been collected through in-field inspections. This evaluation enables the identification of low walkability levels and punctual criticalities. The outcomes of the research can be helpful to public administrations engaged in improving school accessibility and the social vocation of the surrounding public spaces.

Keywords
Walkability; Primary schools; GIS.

How to cite item in APA format
1. Introduction

Already in 1975, traffic psychologist Stina Sandels concluded that ‘even the best road safety education cannot adapt a child to modern traffic, so traffic has to be adapted to the child’ (Sandels, 1975). And in 1996, the third edition of the Living and Walking in Cities Conference organised by the Centro Studi Città Amica (CeSCAm) at the University of Brescia already titled ‘Going to School’, addressing possible interventions to remodel the city looking at children safety to and around school areas (Busi & Ventura, 1996). Indeed, active mobility is a crucial strategy for encouraging children’s physical activity and wellbeing, as well as for supporting decarbonisation actions, but it requires supportive environments that allow children to walk safely and comfortably. The role of schools siting and street design and their effects on the potential to walk to school is well established in the literature (Aynaz Lotfata et al., 2023; Giles-Corti et al., 2011; Rodríguez et al., 2009; Thomas et al., 2022), and nowadays schools are still among the best locations to start street transformations.

As everybody could understand, children are the most important road users around schools and should be protected (Alam, 2022). It is well known that urban areas near schools are often characterised by car traffic congestion, especially at specific times of the day, causing inconvenience for children and their carers in terms of accessibility on foot, but also impacting the environment. This condition also prevents these urban spaces from being used for different purposes: social, educational, or recreational. Recent literature on the subject is increasingly focusing on school streets or school squares as ways to reinvent urban areas around school facilities, also considering tactical urban planning interventions, as those enhanced during the pandemic (City of Victoria, 2019; D’Amico, 2024; Lydon & Garcia, 2015; Hopkinson et al., 2021; Pileri et al., 2022; Sangalli & Pinzuti, 2021). Furthermore, as reminded by Bertolini (Bertolini, 2020), play streets, i.e., the temporarily closure of entire streets to motorised traffic to give children more space to play, are currently experiencing a revival in many parts of the world, usually as a result of citizen initiatives, with significant positive effects on physical activity, safety, social interaction, and social capital. Even in Italian legislation, particular emphasis has recently been placed on the issue. In fact, the “school zone” has been officially included within the Italian Street Code by the Legislative Decree n. 76/2020. This law recently defined “school zones” as urban areas close to school buildings, in which special protection for pedestrians and the environment is guaranteed, delimited along the access roads by appropriate start and end signs. Within this framework, this paper defines a School Walkability Index approach, that could be applied to priorities urban interventions on the road space around school areas. The index was applied to each road segment within pedestrian catchment areas around 21 primary schools in the city of Parma (Italy) to define a comprehensive pedestrian friendliness score of each analysed school catchment area.

The paper is structured as follows: section 2 presents the case study of Parma and the materials and methods applied to evaluate the School Walkability Index. Section 3 shows the results and provides a discussion in terms of quantitative and qualitative walkability assessment around the analysed schools, and finally section 4 concludes the work by presenting future research steps.

2. Materials and methods

2.1 The case study of primary schools in Parma

Parma is a medium-sized city located in the Emilia-Romagna Region, in the north of Italy. In 2023, the city counts 198,431 inhabitants, 8,605 of which are children in the primary school age (6-10 years old), and it is divided in 13 neighborhoods. For this analysis, 21 elementary schools were selected (Fig.1a), including all the primary schools located within the city (both public and private ones), except for primary schools located in

Rossetti S. et al. - Towards more walkable streets. An assessment method applied to school areas in Parma

the historical center (‘Oltretorrente’ and ‘Parma Centro’ neighborhoods), since walkability issues within the historic city presents specific peculiarities that could be addressed through more detailed approaches (see, i.a., Caselli et al., 2021). For each of the analysed schools, specific isochrones were defined considering a child walking at 3 km/h and adopting a GIS-based network analysis methodology (Caselli et al., 2021; Rossetti et al., 2020). Considered isochrones reflect a 3 min. – to define the closest urban area around the schools - 10 min. and 15 min. walking time to and from schools (Fig.1b) - values considered in the literature as optimal catchment areas for primary schools (Mercandino, 2006; ORL-ETH Zürich).

Fig.1 (a) Location of the 21 analysed primary schools within the neighbourhood of Parma; (b) example of the 3-, 10- and 15-minutes walking catchment areas for some of the schools (San Leonardo-Vicini, Micheli and Toscanini-Einaudi) (on the right)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Qualitative evaluation</th>
<th>Quantitative evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pedestrian/Vehicle-allowed</td>
<td>Only pedestrians allowed/Vehicles allowed</td>
<td>P / V</td>
</tr>
<tr>
<td>L1-Sidewalk provision</td>
<td>No/Only one side/Both side</td>
<td>-1/1/2</td>
</tr>
<tr>
<td>L2-Sidewalk width</td>
<td>No/ Only one side >90cm <1.50m/ Only one side >1.50m/ Both side >90cm <1.50m/Both side >1.50m</td>
<td>-1/0.5/1/1.5/2</td>
</tr>
<tr>
<td>L3-Ramps provision</td>
<td>Absent/ Present</td>
<td>-1/1</td>
</tr>
<tr>
<td>L4-Presence of obstacles</td>
<td>Present/ Absent</td>
<td>-1/1</td>
</tr>
<tr>
<td>L5-Surface maintenance</td>
<td>Poor/Good</td>
<td>-1/1</td>
</tr>
<tr>
<td>L6-Continuity</td>
<td>Absent/ Present</td>
<td>-1/1</td>
</tr>
<tr>
<td>L7-Presence of parking</td>
<td>Present/ Absent</td>
<td>-1/1</td>
</tr>
<tr>
<td>C1-Crossing provision</td>
<td>Absent/ Present</td>
<td>-1/1</td>
</tr>
<tr>
<td>C2-Access ramp provision</td>
<td>Absent/ Present</td>
<td>-1/1</td>
</tr>
<tr>
<td>C3-Crossing maintenance</td>
<td>Poor/Good</td>
<td>-1/1</td>
</tr>
<tr>
<td>C4-Crossing length</td>
<td>Excessive/Regular</td>
<td>-1/1</td>
</tr>
<tr>
<td>C5-Visibility</td>
<td>Poor/Good</td>
<td>-1/1</td>
</tr>
</tbody>
</table>

Tab.1 Selected attributes and related evaluation for the walkability assessment in the catchment areas of each analysed school

Within those isochrones, roads inspections were carried out to gather specific data on the pedestrian paths available and on their walkability levels. Detailed field inspections gathered information on each road segment within each isochrone, considering several infrastructural elements (e.g. road type; carriageway width, sidewalk provision and widths, presence of crossings, ramps, lightings, possible presence of obstacles, maintenance and paving factors, continuity), as well as factors related to the urban environment (e.g. buildings types, land uses, presence of public services and facilities) (Campisi et al., 2021; Ignaccolo et al., 2020; Lee et al., 2020; Torrisi et al., 2022). Each of these attributes was evaluated qualitatively and quantitatively,
attributing a numerical value according to the observed description of the considered attribute. The numerical value is lower if the condition of the attribute is negative, and vice versa. Tab.1 summarises the attributes used for the evaluation.

2.2 School Walkability Index (SWI)

To consider the characteristics detected along the pedestrian routes in an aggregate way, a global walkability index was calculated for both vehicular and pedestrian-restricted links. This index was defined as “School Walkability Index” (SWI), as it aims to assess walkability at the catchment areas of each analysed school. In fact, the numerical evaluation assigned to the considered attributes took this into account, i.e. the presence of parking is considered in a negative sense since it would be advisable to encourage soft mobility (i.e. walking and cycling) and discourage the use of private cars to take children to school, and moreover to stop in its immediate surroundings. The calculation of SWI for vehicular links was performed following Equation 1:

$$SWI_{vehic} = L_1 \cdot \left(1 + \frac{\sum_{n=2} L_n}{9}\right) + C_1 \cdot \left(1 + \frac{\sum_{n=2} C_n}{4}\right)$$

where the numbers 9 and 4 respectively correspond to the maximum values that links and crossings’ attributes can assume. Then, the obtained SWIs were normalised between 0 to 1.

The SWI for pedestrian links was considered equal to the maximum normalised value of 1, increasing it by 0.5 in the case of good surface maintenance.

3. Results and Discussions

This session reports the main results obtained for the analysed case study, presented through the elaboration of thematic maps. Using a GIS software, a spatial analysis was conducted with georeferenced data, linking the database of attributes to the road network graph through a joint based on the IDJ parameter, associated with each link.

Fig.2 Examples of thematic maps for the inspected road segments within the 3-, 10- and 15-minute isochrone from some of the considered schools. Each road segment is coloured according to sidewalk presence (left) and obstacles (right)
Fig. 2 shows just few of the possible thematic maps that could be developed with the collected data. The sidewalk provision is shown in Fig. 2 on the left: there is a small number of green links with the sidewalk on both sides and this happens above all passed the immediate surroundings (3-minute isochrone) of the school. The presence of obstacles is graphically shown in the Fig. 2 on the right: in the case of the San Leonardo - Vicini school, there is a greater presence of obstacles along the path. Then, the SWI was assessed for each road and pedestrian segments included in the 3-, 10- and 15-minutes catchment areas of the primary schools. Fig. 3 shows the obtained SWIs for each segment around some of the analysed schools. It evidently emerges in the zoom (on the right) low SWI values associated with the links around the schools of Verdi and Vigatto. In fact, near these two schools, located in peripheral and rural areas of the city it is possible to highlight that the sidewalk is not always present. Afterwards, calculating the arithmetic mean of the SWIs associated with each road and pedestrian segment within the considered isochrones, it was possible to obtain an overall evaluation of the walkability for the 3-, 10- and 15-minutes walking catchment areas of analysed schools (Fig. 4a and 4b).

A quantitative analysis of the obtained results was summarised in Tab. 2, reporting the SWIs for all the analysed school sites, for each of the three isochrone levels considered. On average, the number of schools with a low average SWI value is equal to 38% for the 3- and 10-minute isochrones and it rises to 43% for the 15-minute isochrones. Carrying out a global assessment for the three levels of isochrones, there is an equal distribution between the schools with the worst and best average SWI, in both cases equal to 3 schools.

Then, punctually analysing some schools, it is possible to highlight that in some cases redevelopment interventions would be needed in the immediate vicinity (i.e. Laura SanVitale and Martiri Cefalonia schools); instead, in other cases within the 3-minute isochrone the walkability is good, but moving to 10 and 15 minutes of walking distance the value of the average SWI becomes critical, making walking to the school difficult both in terms of comfort and safety (Fig. 5).

This happens, e.g., in the cases of the Anna Frank and Micheli schools, because the larger service areas (10- and 15-minute isochrone areas) either straddle a peri-urban zone or an obsolete residential area where pavements are not always present on streets, or these are not properly dimensioned.
Rossetti S. et al. - Towards more walkable streets. An assessment method applied to school areas in Parma

Fig. 4a Average normalised SWI in the 3-minute walking catchment areas around the analysed primary schools

Fig. 4b Average normalised SWI in the 10- (on the left) and 15- (on the right) minute walking catchment areas around the analysed primary schools
Towards more walkable streets. An assessment method applied to school areas in Parma

School name
<table>
<thead>
<tr>
<th>School name</th>
<th>Average SWI 3 minutes</th>
<th>Average SWI 10 minutes</th>
<th>Average SWI 15 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALBERTELLI</td>
<td>1.27</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>ANNA FRANK</td>
<td>0.69</td>
<td>0.54</td>
<td>0.59</td>
</tr>
<tr>
<td>BOTTEGO</td>
<td>0.72</td>
<td>0.60</td>
<td>0.64</td>
</tr>
<tr>
<td>BOZZANI</td>
<td>0.33</td>
<td>0.28</td>
<td>0.30</td>
</tr>
<tr>
<td>CAMPANINISI</td>
<td>0.41</td>
<td>0.75</td>
<td>0.66</td>
</tr>
<tr>
<td>CARIGNANO</td>
<td>0.60</td>
<td>0.67</td>
<td>0.59</td>
</tr>
<tr>
<td>CORAZZA</td>
<td>0.74</td>
<td>0.73</td>
<td>0.56</td>
</tr>
<tr>
<td>DON MILANI</td>
<td>0.67</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>FOGNANO</td>
<td>0.49</td>
<td>0.42</td>
<td>0.44</td>
</tr>
<tr>
<td>LAURA SANVITALE</td>
<td>0.62</td>
<td>0.74</td>
<td>0.78</td>
</tr>
<tr>
<td>MARTIRI CEFALONIA</td>
<td>0.56</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>MICHELI</td>
<td>0.73</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>PEZZANI - PUCCINI</td>
<td>0.72</td>
<td>0.72</td>
<td>0.67</td>
</tr>
<tr>
<td>RACAGNI</td>
<td>0.78</td>
<td>0.72</td>
<td>0.70</td>
</tr>
<tr>
<td>RODARI</td>
<td>0.79</td>
<td>0.76</td>
<td>0.71</td>
</tr>
<tr>
<td>S. ROSA - P.G.E. PORTA</td>
<td>0.37</td>
<td>0.66</td>
<td>0.65</td>
</tr>
<tr>
<td>SAN LEONARDO - VICINI</td>
<td>0.62</td>
<td>0.58</td>
<td>0.52</td>
</tr>
<tr>
<td>TOSCANINI - EINAUDI</td>
<td>0.72</td>
<td>0.75</td>
<td>0.69</td>
</tr>
<tr>
<td>VERDI</td>
<td>0.65</td>
<td>0.68</td>
<td>0.63</td>
</tr>
<tr>
<td>VIGATTO</td>
<td>0.32</td>
<td>0.38</td>
<td>0.52</td>
</tr>
<tr>
<td>ZERBINI</td>
<td>0.27</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Tab.2 Average SWI in the catchment areas of each analysed school

Average school walkability index in the 3-, 10- and 15-minute walking areas (schools Martiri Cefalonia, Laura Sanvitale and Anna Frank)

Fig.5 Average normalised SWI in the 3-, 10- and 15-minute walking catchment areas around some of the analysed primary schools that presents different walkability levels in the different isochrones

4. Conclusions

As reported in the literature, school zones (often addressed as school streets or school squares) have positive impacts on children, families, and the environment in general. Their delimitation, in conjunction with road re-
design (also through tactical urbanism) to solve walkability criticalities along the routes, could play a crucial role in boosting walking to schools. The proposed methodology provides an assessment of walking catchment areas around schools highlighting the most critical routes in terms of walkability index, where those kinds of interventions could be more successfully applied. Furthermore, the methodology could also allow the identification of punctual areas around schools where even smaller interventions can improve single walkability bottlenecks or obstacles (e.g. by removing single parking stalls and extending the sidewalk on the model of parklets (Campisi et al., 2022)). All these measures could boost the shift toward active mobility and respond to some of the challenges that contemporary cities are facing: i.a., environmental sustainability, energy transition, resilience, social inclusion and equity (Carpentieri et al., 2023; Carra et al., 2022; Costa & Delponte, 2024; Gargiulo et al., 2022; Papa et al., 2018; Spadaro et al., 2023; Tiboni et al., 2021; Tiboni & Rossetti, 2012; Tira et al., 2020).

The proposed methodology will be exploited, e.g. by considering how the length of each road segment could affect the overall walkability around the school. Further improvements could also involve some analysis of the perception of school pupils (e.g. through questionnaires or surveys), as also already partially done for some pilot primary schools in Parma (San Leonardo, Cocconi and Micheli schools) by the municipality, through the ‘Gamification’ experience developed in 2021 thanks to the URBACT project ‘Thriving Streets’.

References

Image Sources

Fig.1; 2; 3; 4; 5: Elaboration of the authors.

Attributions

This paper is the result of the joint work of the authors. Conceptualisation: S.R., B.C., V.T.; Methodology: S.R, B.C., V.T.; formal analysis, S.R., B.C.; Data curation and elaboration: V.T., S.R., Writing – original draft preparation: S.R. V.T.; Writing – review and editing: B.C., V.T., S.R.; Funding acquisition: S.R., B.C.
Acknowledgements

This research was granted by University of Parma through the action ‘Bando di Ateneo 2022 per la ricerca’ (Project ‘SIT – Streets in Transition’) co-funded by MUR-Italian Ministry of Universities and Research - D.M. 737/2021 - PNR - PNRR – NextGenerationEU.

The participation of V.Torrisi was supported by the project “SAMOTHRACE (ECS00000022)” under the programme “European Union (NextGeneration EU) – MUR-PNRR”.

Author’s profile

Silvia Rossetti
Environmental Engineer with a PhD in Urban and Regional Planning from the University of Brescia (2014). She is Associate Professor in Urban Planning at the Department of Engineering and Architecture (DIA) of the University of Parma, where she lectures 'Urban and Sustainable Planning' and 'City, Landscape, and Regional Analyses’. Currently, she is coordinating the National research PRIN ‘MOVING STEPS - Moving from Street Experiments to Adaptive Planned Solutions’. Her research interests encompass Geographic Information Systems, Urban Regeneration, and Active Mobility.

Barbara Caselli
Architect, Assistant Professor (non-tenure track) in Urban and Regional Planning at the University of Parma, PhD in Urban and Regional Planning at the University of Parma (2017). Her research interests concern the integration of urban planning and active mobility systems with a focus on urban accessibility and open space planning. She also deals with GIS applied to spatial planning and city management.

Vincenza Torrisi
Transport Engineer with a PhD in Evaluation and Mitigation of Urban and Environmental Risks, from University of Catania (2017). She is currently Assistant Professor (non-tenure track) at the University of Catania in the Department of Electric, Electronic and Computer Engineering (DIEEI) and lecturer of ‘Planning and Design of Transport Systems’ and “Laboratory on Sustainable Transport Systems” in the Department of Civil Engineering and Architecture (DICAR). She is also responsible for the management of the "ITS Laboratory" of University of Catania. Her research mainly focuses on sustainable mobility, transport modelling, techniques for monitoring, estimation and forecasting systems with ITS technologies.