This special issue collects a selection of peer-review papers presented at the 8th International Conference INPUT 2014 titled “Smart City: planning for energy, transportation and sustainability of urban systems”, held on 4-6 June in Naples, Italy. The issue includes recent developments on the theme of relationship between innovation and city management and planning.
SMART CITY

PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

Special Issue, June 2014

Published by
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"

TeMA is realised by CAB - Center for Libraries at "Federico II" University of Naples using Open Journal System

Editor-in-chief: Rocco Papa
print ISSN 1970-9889 | on line ISSN 1970-9870
Licence: Cancelleria del Tribunale di Napoli, n° 6 of 29/01/2008

Editorial correspondence
Laboratory of Land Use Mobility and Environment
DICEA - Department of Civil, Architectural and Environmental Engineering
University of Naples "Federico II"
Piazzale Tecchio, 80
80125 Naples
web: www.tema.unina.it
e-mail: redazione.tema@unina.it
TeMA Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journals in the Areas 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists by their competences. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR-IN-CHIEF
Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORIAL ADVISORY BOARD
Luca Bertolini, Universiteit van Amsterdam, Netherlands
Virgilio Bettini, Università Iuav di Venezia, Italy
Dino Borri, Politecnico di Bari, Italy
Enrique Calderon, Universidad Politècnica de Madrid, Spain
Roberto Camagni, Politecnico di Milano, Italy
Robert Leonardi, London School of Economics and Political Science, United Kingdom
Raffaella Nanetti, College of Urban Planning and Public Affairs, United States
Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORS
Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy
Enrique Calderon, Universidad Politècnica de Madrid, Spain
Luca Bertolini, Universiteit van Amsterdam, Netherlands
Romano Fistola, Dept. of Engineering - University of Sannio - Italy
Adriana Galderisi, Università degli Studi di Napoli Federico II, Italy
Carmela Gargiulo, Università degli Studi di Napoli Federico II, Italy
Giuseppe Mazzeo, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy

EDITORIAL SECRETARY
Rosaria Battarra, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy
Andrea Ceudech, TeMALab, Università degli Studi di Napoli Federico II, Italy
Rosa Anna La Rocca, TeMALab, Università degli Studi di Napoli Federico II, Italy
Enrica Papa, University of Amsterdam, Netherlands
This special issue of TeMA collects the papers presented at the 8th International Conference INPUT 2014 which will take place in Naples from 4th to 6th June. The Conference focuses on one of the central topics within the urban studies debate and combines, in a new perspective, researches concerning the relationship between innovation and management of city changing.

CONFERENCE COMMITTEE

Dino Borri, Polytechnic University of Bari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Romano Fistola, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Agostino Nuzzolo, University of Rome, Italy
Rocco Papa, University of Naples Federico II, Italy
Giovanni Rabino, Politecnico University of Milan, Italy
Maurizio Tira, University of Brescia, Italy
Corrado Zoppo, University of Cagliari, Italy

SCIENTIFIC COMMITTEE

Emanuela Abis, University of Cagliari, Italy
Nicola Bellini, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Mariolina Besio Dominici, University of Genoa, Italy
Ivan Blecic, University of Sassari, Italy
Dino Borri, Polytechnic University of Bari, Italy
Grazia Brunetta, Politecnico University of Turin, Italy
Roberto Busi, University of Brescia, Italy
Domenico Camarda, Politecnico University of Bari, Italy
Michele Campagna, University of Cagliari, Italy
Arnaldo Cecchini, University of Sassari, Italy
Donatella Cialdea, University of Molise, Italy
Valerio Cutini, University of Pisa, Italy, Italy
Luciano De Bonis, University of Molise, Italy
Andrea De Montis, University of Sassari, Italy
Filippo de Rossi, University of Sannio (Dean of the University of Sannio), Italy
Lidia Diappi, Politecnico University of Milan, Italy
Isidoro Fasolino, University of Salerno, Italy
Mariano Gallo, University of Sannio, Italy
Lilli Gargiulo, University of Naples Federico II, Italy
Roberto Gerundo, University of Salerno, Italy
Paolo La Greca, University of Catania, Italy
Giuseppe B. Las Casas, University of Basilicata, Italy
Robert Laurini, University of Lyon, France
Antonio Leone, Tuscia University, Italy
Anna Loffredo, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy
Silvana Lombardo, University of Pisa, Italy
Giovanni Maciocco, University of Sassari, Italy
Giulio Maternini, University of Brescia, Italy
EIGHTH INTERNATIONAL CONFERENCE INPUT 2014

SMART CITY. PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

This special issue of TeMA collects the papers presented at the Eighth International Conference INPUT, 2014, titled "Smart City. Planning for energy, transportation and sustainability of the urban system" that takes place in Naples from 4 to 6 of June 2014.

INPUT (Innovation in Urban Planning and Territorial) consists of an informal group/network of academic researchers Italians and foreigners working in several areas related to urban and territorial planning. Starting from the first conference, held in Venice in 1999, INPUT has represented an opportunity to reflect on the use of Information and Communication Technologies (ICTs) as key planning support tools. The theme of the eighth conference focuses on one of the most topical debate of urban studies that combines, in a new perspective, researches concerning the relationship between innovation (technological, methodological, of process etc..) and the management of the changes of the city. The Smart City is also currently the most investigated subject by TeMA that with this number is intended to provide a broad overview of the research activities currently in place in Italy and a number of European countries. Naples, with its tradition of studies in this particular research field, represents the best place to review progress on what is being done and try to identify some structural elements of a planning approach.

Furthermore the conference has represented the ideal space of mind comparison and ideas exchanging about a number of topics like: planning support systems, models to geo-design, qualitative cognitive models and formal ontologies, smart mobility and urban transport, Visualization and spatial perception in urban planning innovative processes for urban regeneration, smart city and smart citizen, the Smart Energy Master project, urban entropy and evaluation in urban planning, etc..

The conference INPUT Naples 2014 were sent 84 papers, through a computerized procedure using the website www.input2014.it. The papers were subjected to a series of monitoring and control operations. The first fundamental phase saw the submission of the papers to reviewers. To enable a blind procedure the papers have been checked in advance, in order to eliminate any reference to the authors. The review was carried out on a form set up by the local scientific committee. The review forms received were sent to the authors who have adapted the papers, in a more or less extensive way, on the base of the received comments. At this point (third stage), the new version of the paper was subjected to control for to standardize the content to the layout required for the publication within TeMA. In parallel, the Local Scientific Committee, along with the Editorial Board of the magazine, has provided to the technical operation on the site TeMA (insertion of data for the indexing and insertion of pdf version of the papers). In the light of the time's shortness and of the high number of contributions the Local Scientific Committee decided to publish the papers by applying some simplifies compared with the normal procedures used by TeMA. Specifically:

− Each paper was equipped with cover, TeMA Editorial Advisory Board, INPUT Scientific Committee, introductory page of INPUT 2014 and summary;

− Summary and sorting of the papers are in alphabetical order, based on the surname of the first author;

− Each paper is indexed with own DOI codex which can be found in the electronic version on TeMA website (www.tema.unina.it). The codex is not present on the pdf version of the papers.
SMART CITY
PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM
Special Issue, June 2014

Contents

 Fabio Andreassi, Pierluigi Properzi
 1-13

 Grazielle Anjos Carvalho
 15-26

3. Temporary Dwelling of Social Housing in Turin. New Responses to Housing Discomfort
 Giulia Baù, Luisa Ingaramo
 27-37

4. Smart Communities. Social Innovation at the Service of the Smart Cities
 Massimiliano Bencardino, Ilaria Greco
 39-51

 Ivan Blečić, Dario Canu, Arnaldo Cecchini, Giuseppe Andrea Trunfio
 53-63

 Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancellu, Giuseppe Andrea Trunfio
 65-76

7. Diachronic Analysis of Parking Usage: The Case Study of Brescia
 Riccardo Bonotti, Silvia Rossetti, Michela Tiboni, Maurizio Tira
 77-85

8. Crowdsourcing. A Citizen Participation Challenge
 Júnia Borges, Camila Zyngier
 87-96

 Júnia Borges, Camila Zyngier, Karen Lourenço, Jonatha Santos
 97-108
<table>
<thead>
<tr>
<th>10.</th>
<th>Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector</th>
<th>109-127</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dino Borri, Laura Grassini</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Learning and Sharing Technology in Informal Contexts. A Multiagent-Based Ontological Approach</td>
<td>129-140</td>
</tr>
<tr>
<td></td>
<td>Dino Borri, Domenico Camarda, Laura Grassini, Mauro Patano</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Smartness and Italian Cities. A Cluster Analysis</td>
<td>141-152</td>
</tr>
<tr>
<td></td>
<td>Flavio Boscacci, Ila Maltese, Ilaria Mariotti</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Beyond Defining the Smart City. Meeting Top-Down and Bottom-Up Approaches in the Middle</td>
<td>153-164</td>
</tr>
<tr>
<td></td>
<td>Jonas Breuer, Nils Walravens, Pieter Ballon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazia Brunetta, Angioletta Voghera</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>ITS System to Manage Parking Supply: Considerations on Application to the “Ring” in the City of Brescia</td>
<td>175-186</td>
</tr>
<tr>
<td></td>
<td>Susanna Bulferetti, Francesca Ferrari, Stefano Riccardi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matteo Caglioni, Giovanni Fusco</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Geodesign From Theory to Practice: In the Search for Geodesign Principles in Italian Planning Regulations</td>
<td>199-210</td>
</tr>
<tr>
<td></td>
<td>Michele Campagna, Elisabetta Anna Di Cesare</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>Geodesign from Theory to Practice: From Metaplanning to 2nd Generation of Planning Support Systems</td>
<td>211-221</td>
</tr>
<tr>
<td></td>
<td>Michele Campagna</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>The Energy Networks Landscape. Impacts on Rural Land in the Molise Region</td>
<td>223-234</td>
</tr>
<tr>
<td></td>
<td>Donatella Cialdea, Alessandra Maccarone</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Marginality Phenomena and New Uses on the Agricultural Land. Diachronic and Spatial Analyses of the Molise Coastal Area</td>
<td>235-245</td>
</tr>
<tr>
<td></td>
<td>Donatella Cialdea, Luigi Mastronardi</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valerio Cutini</td>
<td></td>
</tr>
</tbody>
</table>
22. Co-Creative, Re-Generative Smart Cities.
Smart Cities and Planning in a Living Lab Perspective 2
Luciano De Bonis, Grazia Concilio, Eugenio Leanza, Jesse Marsh, Ferdinando Trapani

23. The Model of Voronoi's Polygons and Density:
Diagnosis of Spatial Distribution of Education Services of EJA
in Divinópolis, Minas Gerais, Brazil
Diogo De Castro Guadalupe, Ana Clara Mourão Moura

Roberto De Lotto, Tiziano Cattaneo, Cecilia Morelli Di Popolo, Sara Morettini,
Susanna Sturla, Elisabetta Venco

25. Landscape Planning and Ecological Networks.
Part A. A Rural System in Nuoro, Sardinia
Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,
Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,
Luigi Laudari, Carmelo Riccardo Fichera

26. Landscape Planning and Ecological Networks.
Part B. A Rural System in Nuoro, Sardinia
Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda,
Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica,
Luigi Laudari, Carmelo Riccardo Fichera

27. Sea Guidelines. A Comparative Analysis: First Outcomes
Andrea De Montis, Antonio Ledda, Simone Caschili, Amedeo Ganciu, Mario Barra,
Gianluca Cocco, Agnese Marcus

Studies for a Method of Analysis of Urban Periphery
Paolo De Pascali, Valentina Alberti, Daniela De Ioris, Michele Reginaldi

The Approach of the Transform Project
Ilaria Delponte

30. From a Smart City to a Smart Up-Country.
The New City-Territory of L'Aquila
Donato Di Ludovico, Pierluigi Properzi, Fabio Graziosi

Interactive Tool for Urban Planning
Enrico Eynard, Marco Santangelo, Matteo Tabasso
 The Case of Out-of-Scale Buildings
 Enrico Fabrizio, Gabriele Garnero
 377-388

33. Smart Dialogue for Smart Citizens:
 Assertive Approaches for Strategic Planning
 Isidoro Fasolino, Maria Veronica Izzo
 389-401

34. Digital Social Networks and Urban Spaces
 Pablo Vieira Florentino, Maria Célia Furtado Rocha, Gilberto Corso Pereira
 403-415

35. Social Media Geographic Information in Tourism Planning
 Roberta Floris, Michele Campagna
 417-430

36. Re-Use/Re-Cycle Territories:
 A Retroactive Conceptualisation for East Naples
 Enrico Formato, Michelangelo Russo
 431-440

37. Urban Land Uses and Smart Mobility
 Mauro Francini, Annunziata Palermo, Maria Francesca Viapiana
 441-452

38. The Design of Signalised Intersections at Area Level.
 Models and Methods
 Mariano Gallo, Giuseppina De Luca, Luca D'acierno
 453-464

 Roberto Gerundo, Gabriella Graziuso
 465-476

40. Social Housing in Urban Regeneration.
 Regeneration Heritage Existing Building: Methods and Strategies
 Maria Antonia Giannino, Ferdinando Orabona
 477-486

41. Using GIS to Record and Analyse Historical Urban Areas
 Maria Giannopoulou, Athanasios P. Vavatsikos,
 Konstantinos Lykostratis, Anastasia Roukouni
 487-497

42. Network Screening for Smarter Road Sites: A Regional Case
 Attila Grieco, Chiara Montaldo, Sylvie Occelli, Silvia Tarditi
 499-509

43. Li-Fi for a Digital Urban Infrastructure:
 A Novel Technology for the Smart City
 Corrado Iannucci, Fabrizio Pini
 511-522

44. Open Spaces and Urban Ecosystem Services.
 Cooling Effect towards Urban Planning in South American Cities
 Luis Inostroza
 523-534
45. From RLP to SLP: Two Different Approaches to Landscape Planning 535-543
 Federica Isola, Cheti Pira

 Jarosław Kazimierczak

47. Geodesign for Urban Ecosystem Services 557-565
 Daniele La Rosa

48. An Ontology of Implementation Plans of Historic Centers: A Case Study Concerning Sardinia, Italy 567-579
 Sabrina Lai, Corrado Zoppi

49. Open Data for Territorial Specialization Assessment. Territorial Specialization in Attracting Local Development Funds: an Assessment. Procedure Based on Open Data and Open Tools 581-595
 Giuseppe Las Casas, Silvana Lombardo, Beniamino Murgante, Piergiuseppe Pontrandolfi, Francesco Scorza

50. Sustainability And Planning. Thinking and Acting According to Thermodynamics Laws 597-606
 Antonio Leone, Federica Gobattoni, Raffaele Pelorosso

51. Strategic Planning of Municipal Historic Centers. A Case Study Concerning Sardinia, Italy 607-619
 Federica Leone, Corrado Zoppi

52. A GIS Approach to Supporting Nightlife Impact Management: The Case of Milan 621-632
 Giorgio Limonta

 Giampiero Lombardini

54. Social Media Geographic Information: Recent Findings and Opportunities for Smart Spatial Planning 645-658
 Pierangelo Massa, Michele Campagna

 Giulio Maternini, Stefano Riccardi, Margherita Cadei
56. Urban Labelling: Resilience and Vulnerability as Key Concepts for a Sustainable Planning
 Giuseppe Mazzeo
 671-682

57. Defining Smart City. A Conceptual Framework Based on Keyword Analysis
 Farnaz Mosannenzadeh, Daniele Vettorato
 683-694

58. Parametric Modeling of Urban Landscape: Decoding the Brasilia of Lucio Costa from Modernism to Present Days
 Ana Clara Moura, Suellen Ribeiro, Isadora Correa, Bruno Braga
 695-708

59. Smart Mediterranean Logics. Old-New Dimensions and Transformations of Territories and Cities-Ports in Mediterranean
 Emanuela Nan
 709-718

60. Mapping Smart Regions. An Exploratory Approach
 Sylvie Occelli, Alessandro Sciullo
 719-728

61. Planning Un-Sustainable Development of Mezzogiorno. Methods and Strategies for Planning Human Sustainable Development
 Ferdinando Orabona, Maria Antonia Giannino
 729-736

 Rocco Papa, Carmela Gargiulo, Gennaro Angiello
 737-747

63. Integrated Urban System and Energy Consumption Model: Residential Buildings
 Rocco Papa, Carmela Gargiulo, Gerardo Carpentieri
 749-758

64. Integrated Urban System and Energy Consumption Model: Public and Singular Buildings
 Rocco Papa, Carmela Gargiulo, Mario Cristiano
 759-770

65. Urban Smartness Vs Urban Competitiveness: A Comparison of Italian Cities Rankings
 Rocco Papa, Carmela Gargiulo, Stefano Franco, Laura Russo
 771-782

 Rocco Papa, Carmela Gargiulo, Floriana Zucaro
 783-792

67. Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans
 Rocco Papa, Carmela Gargiulo, Floriana Zucaro
 793-804
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Paper Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>Bio-Energy Connectivity And Ecosystem Services. An Assessment by Pandora 3.0 Model for Land Use Decision Making</td>
<td>805-816</td>
</tr>
<tr>
<td></td>
<td>Raffaele Pelorosso, Federica Gobattoni, Francesco Geri, Roberto Monaco, Antonio Leone</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Entropy and the City. GHG Emissions Inventory: a Common Baseline for the Design of Urban and Industrial Ecologies</td>
<td>817-828</td>
</tr>
<tr>
<td></td>
<td>Michele Pezzagno, Marco Rosini</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Urban Planning and Climate Change: Adaptation and Mitigation Strategies</td>
<td>829-840</td>
</tr>
<tr>
<td></td>
<td>Fulvia Pinto</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Urban Gaming Simulation for Enhancing Disaster Resilience. A Social Learning Tool for Modern Disaster Risk Management</td>
<td>841-851</td>
</tr>
<tr>
<td></td>
<td>Sarunwit Promsaka Na Sakonnakron, Pongpisit Huyakorn, Paola Rizzi</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Visualisation as a Model. Overview on Communication Techniques in Transport and Urban Planning</td>
<td>853-862</td>
</tr>
<tr>
<td></td>
<td>Giovanni Rabino, Elena Masala</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Ontologies and Methods of Qualitative Research in Urban Planning</td>
<td>863-869</td>
</tr>
<tr>
<td></td>
<td>Giovanni Rabino</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>City/Sea Searching for a New Connection. Regeneration Proposal for Naples Waterfront Like an Harbourscape: Comparing Three Case Studies</td>
<td>871-882</td>
</tr>
<tr>
<td></td>
<td>Michelangelo Russo, Enrico Formato</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Sensitivity Assessment. Localization of Road Transport Infrastructures in the Province of Lucca</td>
<td>883-895</td>
</tr>
<tr>
<td></td>
<td>Luisa Santini, Serena Pecori</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>Creating Smart Urban Landscapes. A Multimedia Platform for Placemaking</td>
<td>897-907</td>
</tr>
<tr>
<td></td>
<td>Marichela Sepe</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>Virtual Power Plant. Environmental Technology Management Tools of The Settlement Processes</td>
<td>909-920</td>
</tr>
<tr>
<td></td>
<td>Maurizio Sibilla</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Ecosystem Services and Border Regions. Case Study from Czech – Polish Borderland</td>
<td>921-932</td>
</tr>
<tr>
<td></td>
<td>Marcin Spyra</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>The Creative Side of the Reflective Planner. Updating the Schön’s Findings</td>
<td>933-940</td>
</tr>
<tr>
<td></td>
<td>Maria Rosaria Stufano Melone, Giovanni Rabino</td>
<td></td>
</tr>
</tbody>
</table>
80. Achieving People Friendly Accessibility.
Key Concepts and a Case Study Overview
Michela Tiboni, Silvia Rossetti

81. Planning Pharmacies: An Operational Method to Find the Best Location
Simona Tondelli, Stefano Fatone

82. Transportation Infrastructure Impacts Evaluation:
The Case of Egnatia Motorway in Greece
Athanasios P. Vavatsikos, Maria Giannopoulou

83. Designing Mobility in a City in Transition.
Challenges from the Case of Palermo
Ignazio Vinci, Salvatore Di Dio

84. Considerations on the Use of Visual Tools in Planning Processes:
A Brazilian Experience
Camila Zyngier, Stefano Pensa, Elena Masala
THE DESIGN OF SIGNALISED INTERSECTIONS AT AREA LEVEL
MODELS AND METHODS

MARIANO GALLOa, GIUSEPPINA DE LUCAb, LUCA D’ACIERNOc

c ‘Federico II’ University of Naples
e-mail: dacierno@unina.it
a University of Sannio
e-mail: gallo@unisannio.it
URL: www.mgallo.it
b University of Sannio
e-mail: pideluca@unisannio.it

\textbf{ABSTRACT}
In this paper the results of the PRIN research project named "Guidelines for the urban transportation network analysis and design: methods and models for designing at area level the signalised intersections" are summarised. In the research project, several problems of signal settings optimisation at area level were studied and some methods and model for optimising the signal setting parameters were proposed. All proposed methods were tested on a real-scale case: the road network of Benevento. The results of the research showed that the proposed methods are able to solve the problem in acceptable computing times also on real-scale networks.

\textbf{KEYWORDS}
Network optimisation, Arterial coordination, Traffic-lights, Road traffic
1 INTRODUCTION

A city can be defined a Smart City if ICT and transport infrastructures are conceived and designed so to ensure a sustainable development and a high level of quality of life. The smart mobility is an important dimension of the Smart City, since in urban areas the economics and environmental impacts of the mobility (of people and goods) are very significant. In this context, the design of traffic-lights at area level is an "action" very useful in order to contribute to the smart mobility. Indeed, in congested urban networks a major part of total travel time is spent at intersections and a correct design of them can reduce significantly the total travel time and the (GHG and pollutants) emissions.

The signal settings are usually optimised for an intersection independently of others (isolated intersection) but better results can be obtained optimising signal setting parameters at area level.

In the literature, several techniques and models have been developed for optimising signal settings, and three main problems have emerged: (a) single junction optimisation; (b) arterial optimisation/coordination; (c) multiple junction optimisation (signal network control). Problem (a) regards the isolated junction while problems (b) and (c) regard the optimisation at the area level.

In this paper, we summarise the results obtained during the development of a PRIN (National Relevance Research Project) research project funded by the MIUR (Italian Ministry of Schools and Universities) where the design of signalised intersections at area level have been studied.

In the literature, the arterial optimisation/coordination problem was widely studied. Some important books (ITE, 2009; Roess et al., 2010) report the main solution methods and approaches. Of the many papers, books, handbooks and software programs that have been proposed, some tackle the problem using simulation-based models, while others propose to use analytical models. Examples of simulation-based models are TRANSYT-7F (Robertson, 1968; Wallace et al., 1988) and SIGOP III (Liebermann et al., 1983) while analytical models have been proposed by Gartner et al. (1975) and Liu and Chang (2011). Other papers tackle the bandwidth maximisation problem (Morgan and Little, 1964; Little, 1966; Inose and Amada, 1975) that arises when the coordination regards both directions of the arterial. This problem was studied amongst others by Little et al. (1981), Gartner et al. (1991), Stamadiatis and Gartner (1996), and Papola and Fusco (1998).

The multiple junction optimisation problem can be seen as a particular case of the more general Equilibrium Network Design Problem (ENDP), where signal settings assume the role of decision variables; this problem is also known as the Signal Setting Design Problem (SSDP) and for solving it two different approaches can be identified (Cascetta et al., 2006): a global approach and a local approach. In the first case, the problem is actually an ENDP, formulated with a (non-linear constrained) optimisation model, and is also known as Global Optimisation of Signal Settings (GOSS). In the second case, instead, it is assumed that the signal settings of each junction are designed so as to minimise only the total delay at the same junction according to a specific local control policy. This problem is known also as Local Optimisation of Signal Settings (LOSS) and is the focus of this paper. The general problem was studied by Marcotte (1983), Fisk (1984), Cantarella et al. (1991), Cantarella and Sforza (1995), and Cascetta et al. (1999, 2006).

The GOSS problem can be formulated, instead, as a (non-linear) constrained optimisation problem where signal settings assume the role of decision variables and was studied, amongst others, by Sheffi and Powell.
In this paper, summarising the results obtained during the PRIN research project, we focus on three problems:

1. optimisation of signal settings of two-way coordinated arterials;
2. local optimisation of signal settings problem, known also as “combined assignment-control problem”;
3. global optimisation of signal settings.

For all problems, mathematical models will be formulated and solution algorithms will be proposed and tested on a real-scale network.

2 TWO-WAY COORDINATED ARTERIALS

Coordinating the signal settings of an arterial is a control strategy to minimise travel delays on a main road with multiple consecutive intersections. The solution of the single arterial coordination problem is simple if the arterial is one-way: in this case optimal green offsets can be calculated according to distance between intersections and average flow speed, always obtaining the ideal coordination corresponding to the maximum bandwidth (defined as the time interval during which the vehicles are able to travel on the road without any stops at intersections). The same problem is more complex for two-way arterials where the problem is usually approached as one of bandwidth maximisation. However, the latter does not ensure minimum total delay (or total travel time) on the network.

In this section we study the problem of coordinating two-way signalised arterials with a view to minimising total delay, using a microsimulation approach to explore the solution set. In the following we summarise the results reported in D’Acierno et al. (2013), paper produced during the development of the PRIN research project.

2.1 MODEL FORMULATION AND SOLUTION ALGORITHM

We consider a two-way arterial where all intersections are signalised; we assume that the cycle time, \(C \), and the effective green times, \(g_c \) and \(g_{nc} \), are calculated as a function of known traffic flows (subscripts \(c \) and \(nc \) refer respectively to the coordinated and non-coordinated phase), for instance with the well-known Webster (1958) method. The objective is to optimise the total delay on the arterial, \(td \), that is the sum of the delays at all approaches to the arterial’s junctions. Obviously, the total delay depends on the offsets of the junction, \(q \). The total delay is calculated by a microsimulation model.

The optimisation model can be formulated as follows:

\[
q^* = \text{Arg}\min_{q} \; td(q)
\]

s.t.:

\[
0 \leq q < C
\]

\[
\text{td}(q) = MS(q)
\]

where \(q \) is the vector of the offsets; \(q^* \) is the optimal value for \(q \); \(0 \) is the zero vector (a vector with the same dimension of the \(q \) vector with all components equal to 0); \(C \) is the cycle vector (a vector with the same dimension of the \(q \) vector with all components equal to \(C \)); \(MS(q) \) indicates the microsimulation model that is able to estimate the total delay as a function of the offsets.
This is a constrained non-linear optimisation model requiring a microsimulation model to be set up to estimate the value of the objective function; in order to solve it, D’Acierno et al. (2013) proposed and tested two versions of a multi-start Neighbourhood Search (NS) algorithm. The two versions were different according to two different approaches for generating the next solution in the NS algorithm: the Steepest Descent Method (SDM) and the Random Descent Method (RDM). The necessity of a multi-start procedure is due to the non-convexity of the objective function. For the details about algorithms, refer to the previously quoted paper.

2.2 NUMERICAL RESULTS

The proposed model and algorithm were tested on a real case, namely an arterial in the urban network of Benevento (Italy); Figure 1 reports the arterial and the traffic flows. In this case, we have only two decision variables that are the offsets q_1 and q_2, assuming that the offset of the first intersection is equal to 0. We considered three starting solutions: Solution 0, where the offsets are all equal to 0; Solution A, where the offsets are designed so to be optimal in one of the direction; Solution B, where the offsets are designed so to be optimal in the other direction. Moreover, we performed an exhaustive search, in order to verify the goodness of the results, assuming a discrete step equal to 5 s. In Figure 2(a), the shape of the objective function is reported and in Figure 2(b) the steps of the multi-start neighbourhood search.
On examining the exhaustive search it can be noted that the best solution obtained by the multi-start
neighbourhood search method is also the global optimum (Starting solution A). Moreover, the three local
optimal solutions have similar values of q_1 (in two cases the value is the same).
An exhaustive search is possible in this particular test case since we have only two offsets to design. In
longer arterials where there may be up to 8-10 offsets to design, an exhaustive search is not possible with
acceptable computing times. However, the proposed multi-start neighbourhood search is able to produce
some local optima with acceptable computing times.

3 LOCAL OPTIMISATION OF SIGNAL SETTINGS

The Local Optimisation of Signal Settings (LOSS) problem arises when signal control parameters of an urban
road network are locally optimised and have to be consistent with equilibrium traffic flows. This problem can
be formulated with an (asymmetric) equilibrium assignment model.
In the following, we summarise the results reported in Gallo et al. (2013), paper produced during the
development of the PRIN research project. In particular, we study the LOSS problem, examining the model
formulation, proposing some solution algorithms and testing them on a real-scale case.

3.1 MODEL FORMULATION AND SOLUTION ALGORITHMS

For solving the LOSS problem, the following fixed-point mathematical model can be formulated (see also
Cascetta et al., 2006):

$$ f^* = f(c(f^*, g(f^*))) $$

where f is the link flow vector; f^* is the equilibrium link flow vector; c is the link cost vector and $c(.)$ the
vector of link cost functions; g is the vector of signal settings; $g(f^*)$ is the local control policy (for instance,
Webster, 1958).

In terms of theoretical properties, the link cost functions are non-separable, since at each intersection the
cost of a link depends on the flows of all concurring links (the control policy recalculates signal settings as a
function of all flows at the intersection). Therefore, the Jacobian is not positive definite and the uniqueness
of the fixed-point solution cannot be stated (Charlesworth, 1977, showed that more than one equilibrium
solution can be found). Instead, the existence of a solution is ensured by the continuity of the functions (a
condition that is satisfied for stochastic route choice models, continuous cost-flow functions and continuous
local control policy functions).

In order to solve the problem, we propose three algorithms based on an MSA framework (Powell and Sheffi,
1982; Sheffi and Powell, 1982). The MSA (Method of Successive Averages) is widely used for solving traffic
assignment problems. For solving the traffic assignment problem three MSA algorithms are available: the
MSA-FA (Flow Averaging), which is the original version proposed by Sheffi and Powell (1982); the MSA-CA
(Cost Averaging), which was proposed by Cantarella (1997); and, the MSA-ACO (Ant Colony Optimisation),
which was proposed by D’Acierno et al. (2006). For the details about algorithms, refer to Gallo et al. (2013).

3.2 NUMERICAL RESULTS

The model and algorithms were tested on the urban network of Benevento, a town in the south of Italy with
about 61,000 inhabitants. The transportation model (demand and supply) was built during the design of the
Urban Traffic Plan of the town. The network graph has 1,577 oriented links, which represents about 216 kms
of roads, and 678 nodes. The zoning of the study area is very dense, with 66 internal zones; the cordon sections are 14, so the total centroids are 80 (66 internal and 14 external). Figure 3 shows the graph of the network: different colours for links and nodes indicate different kinds of roads and intersections.

In order to test and compare the algorithms, we generate 35 different scenarios, considering seven different demand levels (ODXX) and five different supply models (SIGXX), increasing the number of signalised intersections.

The three algorithms, MSA-FA, MSA-CA and MSA-ACO, were implemented in Visual Basic code and all tests were conducted using a PC Intel Core i7-2600 (3.40 GHz).

The three algorithms were tested for all 35 scenarios; Table 1 reports the number of iterations and the corresponding computing times. The comparison shows that MSA-ACO and MSA-CA algorithms perform better than MSA-FA for almost all scenarios. Between MSA-ACO and MSA-CA the differences are less substantial, although MSA-ACO seems to work slightly better. The differences between algorithms are very significant when the demand is high (OD18 and, above all, OD20) and when the signalised intersections are numerous. In three scenarios, MSA-FA algorithm does not converge in acceptable computing times: the algorithm is stopped after 100,000 iterations but the convergence test always tends to decrease.

Figure 4 shows the convergence of the algorithms in the scenario SIG48-OD20; in the diagrams only the first 200 iterations are represented.
Assuming total travel time as a performance index of the network, we compare, for all 35 scenarios, the solutions obtained by solving the combined assignment-control problem with the solution that can be obtained by applying the local control policy without updating flows and signal settings until convergence. In Table 2 the total travel times on the network are compared; we report only the results obtained with MSA-CA algorithms, since the results obtained with the other MSA algorithms are similar (a slight difference in total travel times is produced by the approximation due to the stop threshold but the final solutions are in practice the same). The results (see Table 2) show that great advantages of applying the methodology are obtained when the network is very congested and the signalised intersections are numerous; in this case, travel time reduction may be as much as 17%.

<table>
<thead>
<tr>
<th>OD08</th>
<th>OD10</th>
<th>OD12</th>
<th>OD14</th>
<th>OD16</th>
<th>OD18</th>
<th>OD20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Comparison among MSA-FA, MSA-CA and MSA-ACO in terms of iterations and computing times

<table>
<thead>
<tr>
<th>OD08</th>
<th>OD10</th>
<th>OD12</th>
<th>OD14</th>
<th>OD16</th>
<th>OD18</th>
<th>OD20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Comparison among starting and final solution in terms of total travel times

<table>
<thead>
<tr>
<th>OD08</th>
<th>OD10</th>
<th>OD12</th>
<th>OD14</th>
<th>OD16</th>
<th>OD18</th>
<th>OD20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab.1 Comparison among MSA-FA, MSA-CA and MSA-ACO in terms of iterations and computing times

<table>
<thead>
<tr>
<th>OD08</th>
<th>OD10</th>
<th>OD12</th>
<th>OD14</th>
<th>OD16</th>
<th>OD18</th>
<th>OD20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIG08</td>
<td>SIG18</td>
<td>SIG28</td>
<td>SIG38</td>
<td>SIG48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab.2 Comparison among starting and final solution in terms of total travel times
4 GLOBAL OPTIMISATION OF SIGNAL SETTINGS

The GOSS problem arises when the parameters of all (or some) signalised intersections of a network are jointly optimised so as to minimise the value of an objective function (such as total travel time). This problem can be formulated with a non-linear constrained optimisation model.

In the following, we summarise the results reported in Gallo et al. (2014), paper produced during the development of the PRIN research project. In particular, we study the GOSS problem, examining the model formulation, proposing some solution algorithms and testing them on a real-scale case.

4.1 MODEL FORMULATION AND SOLUTION ALGORITHMS

For solving the GOSS problem we formulate the following optimisation mathematical model:

$$ g^* = \text{Arg} \min \left[c(g, f^*) \right]$$

with:

$$ g = [g_1^A, g_2^A, ..., g_i^A, ..., g_n^A]$$

subject to:

$$ f^* = \Delta P(d(c(g, f^*))) d$$
$$ g_{\text{min}} \leq g_i^A \leq C_i - g_{\text{min}} \quad \forall \ i$$
$$ g_i^B = C_i - g_i^A \quad \forall \ i$$

where g is the signal settings vector; f is the link flow vector; g^* is the optimal solution; f^* represents the equilibrium link flow vector (obtained by solving an equilibrium assignment problem on the network); $c(.)$ is the link cost vector; $P(.)$ is the route choice probability matrix; Δ is the link-route incidence matrix; d is the demand vector; g_{min} is the minimum value of effective greens (for instance 15 seconds).

In this formulation of the problem we assume that the cycle lengths are not considered decision variables and all signalised intersections have only two phases; these assumptions allow the number of decision variables to be reduced to one for each signalised intersection.

For solving the optimisation problem we propose to use a multi-start method based on a Feasible Descent Direction Algorithm (FDDA), as well the Neighbourhood Search (NS) cited in Section 2.1; also in this case both approaches based on steepest descent (SDM) and random descent (RDM) methods were adopted. The multi-start approach is necessary since the objective function is not convex, except for simple cases, and looking for more local optimal solutions can improve the final results, even if it requires higher computing times. In particular, in the proposed algorithm we will assume that decision variables (i.e. g) are discrete and express the duration in seconds of the effective green times. For the details about algorithms, refer to Gallo et al. (2014).

4.2 NUMERICAL RESULTS

The proposed algorithms were tested on the urban network of Benevento (for details see Section 3.2). We tested the considering the following starting points: (a) all variables g_i^A equal to 50% of the cycle; (b) all variables g_i^A equal to g_{min} (c) all variables g_i^A equal to $C_i - g_{\text{min}}$ (d) all variables g_i^A equal to g_i^A*, where g_i^A* represents the solution of the LOSS problem; (e) random values for all variables g_i^A.

4 M. Gallo, G. De Luca, L. D’Acierno - The design of signalised intersections at area level
Initial tests were implemented to compare the SDM approach with that of the RDM, by applying all assignment algorithms in the case of the starting point (a). The results summarised in Table 3 show that the RDM almost always requires less computational effort both in terms of calculation times and algorithmic steps. In Table 4 are reported the results obtained adopting the multi-start approach with the RDM approach. The results show the applicability of the proposed methods also on real-scale networks with acceptable computing times.

<table>
<thead>
<tr>
<th>FDDA approach</th>
<th>Assignment algorithm</th>
<th>Decision variables</th>
<th>Optimal objective function value</th>
<th>Algorithm iterations (AIs)</th>
<th>UNLs</th>
<th>UNLs/AIs</th>
<th>Calculation times [min.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SDM</td>
<td>MSA-FA-F0</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2863.078</td>
<td>297</td>
<td>10870</td>
<td>36.599</td>
<td>149.62</td>
</tr>
<tr>
<td></td>
<td>MSA-FA-UE</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2862.182</td>
<td>299</td>
<td>638</td>
<td>2.134</td>
<td>8.85</td>
</tr>
<tr>
<td></td>
<td>MSA-CA-F0</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2864.588</td>
<td>297</td>
<td>2079</td>
<td>7.000</td>
<td>26.30</td>
</tr>
<tr>
<td></td>
<td>MSA-CA-UE</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2862.212</td>
<td>282</td>
<td>574</td>
<td>2.035</td>
<td>7.96</td>
</tr>
<tr>
<td></td>
<td>MSA-ACO-F0</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2859.963</td>
<td>297</td>
<td>2079</td>
<td>7.000</td>
<td>27.90</td>
</tr>
<tr>
<td></td>
<td>MSA-ACO-UE</td>
<td>45 45 45 45 45 45 45 45 45</td>
<td>2868.986</td>
<td>19</td>
<td>43</td>
<td>2.263</td>
<td>0.61</td>
</tr>
</tbody>
</table>

RDM	MSA-FA-F0	45 45 45 45 45 45 45 45 45	2862.071	290	10668	38.786	133.29
	MSA-FA-UE	45 45 45 45 45 45 45 45 45	2862.165	428	919	2.147	12.31
	MSA-CA-F0	45 45 45 45 45 45 45 45 45	2864.581	232	1624	7.000	21.50
	MSA-CA-UE	45 45 45 45 45 45 45 45 45	2862.216	232	483	2.082	6.53
	MSA-ACO-F0	45 45 45 45 45 45 45 45 45	2859.956	254	483	2.082	6.53
	MSA-ACO-UE	45 45 45 45 45 45 45 45 45	2862.164	217	854	2.048	10.93

| Tab.3 Comparison between SDM and RDM approaches |

<table>
<thead>
<tr>
<th>Decision variables</th>
<th>Optimal objective function value</th>
<th>Algorithm iterations (AIs)</th>
<th>UNLs</th>
<th>UNLs/AIs</th>
<th>Calculation times [min.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial values: starting point (b)</td>
<td>15 15 15 15 15 15 15 15 15</td>
<td>2862.163</td>
<td>446</td>
<td>1344</td>
<td>3.013</td>
</tr>
<tr>
<td>Algorithm implementation</td>
<td>45 48 55 65 51 58 53 42 45</td>
<td>2862.164</td>
<td>578</td>
<td>1211</td>
<td>2.095</td>
</tr>
<tr>
<td>Initial values: starting point (c)</td>
<td>54 53 65 51 58 53 42 45 45</td>
<td>2862.165</td>
<td>287</td>
<td>942</td>
<td>3.282</td>
</tr>
<tr>
<td>Algorithm implementation</td>
<td>55 47 55 65 51 58 53 42 45</td>
<td>2862.165</td>
<td>543</td>
<td>1211</td>
<td>2.095</td>
</tr>
</tbody>
</table>

| Tab.4 Implementation of the multi-start approach in the case of FDDA-RDM |

5 CONCLUSIONS

The Smart Mobility is an important aspect of the Smart City and the optimisation of traffic-lights at area level is an effective action that can be implemented in order to reduce travel time, congestion and environmental impacts of urban traffic. In this paper we proposed models and methods for designing the signal settings at area level. We studied three different problems and proposed for each one some models and methods for solving them. The results showed the applicability of proposed procedures on real-scale cases and the reduction of travel time on the network.

ACKNOWLEDGEMENTS

Partially supported by the Italian MIUR under PRIN2009 grant no. 2009EP3S42_002.
REFERENCES

IMAGES SOURCES

All images were produced by the authors.

AUTHORS' PROFILE

Mariano Gallo

Associate professor in Transportation at University of Sannio, Department of Engineering. Ph.D in Transportation engineering, 'La Sapienza' University of Rome, 1999. MSc degree with honours in Civil Engineering (specialising in Transportation Engineering), 'Federico II' University of Naples, 1995. Nowadays is lecturer in 'Transportation system engineering' (12 ECTS) and in 'Transportation planning and policy' (6 ECTS) at University of Sannio. He was lecturer on several Masters and training courses. He attended numerous international conferences. He is reviewer for many international journals. He is author of more than 80 papers, many of them on international journals and books.

Giuseppina De Luca

Research fellow at the Department of Engineering of the University of Sannio. MSc degree in Civil Engineering (specialising in Transportation Engineering), 'Federico II' University of Naples, 2001. Her main job activities include the design of individual and public transportation systems; the simulation of traffic flows on multimodal networks; the planning, design and management of the local public transportation systems. She worked at the research company "Centro Studi sui Sistemi di Trasporto" (Naples) and at the "Agenzia Campana per la Mobilità Sostenibile". Her main research activities include the analysis and design of urban transportation networks, the environmental sustainability and energy saving issues.

Luca D'Acierno

Assistant professor in Transportation at 'Federico II' University of Naples, Department of Civil, Architectural and Environmental Engineering. Ph.D. in Road infrastructures and transportation systems, 'Federico II' University of Naples, 2003. MSc degree with honours Civil Engineering (specialising in Transportation Engineering), 'Federico II' University of Naples, 2000. Nowadays is lecturer in 'Organisation and safety in rail network operations' (9 ECTS) and assistant in 'Transportation system design' (9 ECTS) at 'Federico II' University of Naples. He is reviewer for many international journals. He is author of more than 100 papers, many of them on international journals and books.