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Abstract  
The transportation and land use sectors are closely interdependent, and real-life circumstances often exhibit 
substantial reciprocal influences. Currently, efforts are being made to enhance transportation and land use 
sustainably; hence to achieve sustainability, it is necessary to have well-optimized plans and 
implementations for the advancements, which consequently leads to an increased demand for vast amounts 
of data. Conducting manual surveys to collect data on various types of buildings is considerably costly, 
requires much labor, and is time-consuming. Remote sensing technology has demonstrated significant 
promise to encompass a greater extent in a reduced timeframe, as well as to engage in thorough data 
collection and effectively manage and analyze the acquired data. This work centers on constructing a 
classification system that categorizes buildings depending on their use, specifically distinguishing between 
residential and non-residential structures. The classification challenge is accomplished through instance 
segmentation using the state-of-the-art YOLOV8 model architecture and remotely sensed images. The main 
objective of this project is to create base maps for travel analysis zones (TAZs) using identified buildings. 
To properly align the output images generated by the model, geographical data is appended to the output 
images derived from the original input images. 
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1. Introduction  
Over the years, Indian cities have grown substantially, prompting administrative bodies to institute various 
measures to contend with the challenges arising from this demographic surge (Aithal & Ramachandra, 2016). 
The ramifications of this population expansion are intricate, with urban development becoming a pivotal aspect 
of addressing the needs of the burgeoning populace. One crucial aspect of this development lies in the 
simultaneous growth of multiple industries within urban areas. A notable interdependence exists between land 
use and transportation sectors, implying that advancements in one sector invariably necessitate corresponding 
developments in the other. This interlinkage is particularly evident in the context of urban planning and 
development. For instance, envisioning the expansion of a business district requires not only an augmentation 
of physical space but also necessitates well-developed transportation amenities. The term “amenities” in this 
context encompasses a comprehensive spectrum, ranging from infrastructure like roads and public transit 
networks to considerations of accessibility and service quality. The quality and efficiency of transportation 
infrastructure play a crucial role in facilitating the smooth functioning of urban centers and supporting the 
growth of various industries. 
In practical terms, this might involve establishing efficient road networks, implementing robust public 
transportation systems, and enhancing overall accessibility within the urban fabric. The relationship between 
land use and transportation is symbiotic; improved transportation facilitates the accessibility of different areas 
(Raju et al., 2020; Galderisi et al., 2021), decision-making (Tira, 2021; Gazzola et al., 2021), and influencing 
land-use patterns, while changes in land use necessitate adjustments and improvements in transportation 
systems. Therefore, understanding and managing this intricate interplay is vital for sustainable and well-
planned urban development, ensuring that the needs of a growing population are met effectively. 
The role of land use features in the realm of transportation planning is widely recognized for its significance. 
However, the traditional method of collecting information on buildings over expansive areas faces practical 
challenges such as a time-consuming process, reduced reliability, high costs, and substantial manpower 
requirements. In response to these challenges, remote sensing emerges as a powerful solution, demonstrating 
its efficacy in resource management by efficiently covering vast areas while minimizing labor and time demands 
(Ramachandra et al., 2012; Carpentieri & Favo, 2017; Zullo et al., 2015). The escalating demand for 
transportation often results in the need for urban expansion, leading to significant sprawls on the outskirts. 
Delhi, for instance, has witnessed a remarkable increase of over 800% in its built-up area within four decades 
(Ramachandra et al., 2015; Bharath et al., 2017). Conducting spatial studies encompassing diverse land use 
features necessitates using effective models for extracting information. Adopting machine learning or deep 
learning-based models is gaining traction in the geospatial domain and various research areas. Extracting 
features from satellite or aerial photography is integral to remote sensing and GIS, with building extraction 
standing out as a substantial task. Researchers have developed diverse methodologies, including training fully 
convolutional networks on multi-source datasets to exploit variations in targeted objects (Ji et al., 2018), 
detecting buildings from low-contrast images (Amir et al., 2018; Chen et al., 2018; Li & Cao, 2019), utilizing 
images of different scales (Yang et al., 2018; Chen et al., 2022), leveraging building shadows at different sun 
angles (Sirmacek & Unsalan, 2008), and incorporating spatial feature-based metrics (Pavlidis & Liow, 1989). 
Segmentation is the most efficient method for extracting buildings from remotely sensed images. Numerous 
deep learning architectures have been devised for this purpose, including U-Net with various modifications 
(Wang & Miao, 2022; Prakash et al., 2022; Madhumita et al., 2023), VGGNet (Simonyan & Zisserman, 2014), 
GoogleNet (Szegedy et al., 2015), ResNet (He et al., 2016), ImageNet (Krizhevsky et al., 2017), and Segnet 
(Badrinarayanan et al., 2017). The categorization of land use features operates at multiple levels, with building 
extraction falling under level-1 classification, involving the isolation of buildings from the total image. Beyond 
this, level-2 classification (Which means after classifying and extracting the buildings form the entire image, 
those buildings are againg classified into different classes) encompasses the categorization of building types 
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based on utility, distinguishing between residential and non-residential structures. Achieving this classification 
level requires viewing buildings as entities with distinct architectural configurations, characteristics, 
dimensions, and scales. Object identification or instance segmentation becomes essential to surpass level-1 
classification. Various model designs have emerged within the computer vision sector to harness substantial 
advancements. Notable models include Fast-CNN (Girshick, 2015), You Only Look Once (YOLO) (Redmon et 
al., 2016), SSD: Single Shot Multibox Detector (Liu et al., 2016), and Spatial Pyramid Pooling (He et al., 2015). 
These models showcase the evolving landscape of techniques and approaches in extracting and categorising 
land use features, playing a crucial role in integrating remote sensing and GIS into transportation planning 
and spatial studies. The allocation of land in urban areas has far-reaching implications for various aspects of 
transportation planning, exerting significant influence on key factors such as the identification of congestion 
zones, the evaluation of traffic flow dynamics, and the construction of origin-destination matrices. An integral 
component of transportation analyses involves considering land use issues, encompassing factors like land use 
mix and zoning, which offer valuable insights into the diverse activities occurring in different regions of an 
area throughout the day (Levine, 2010). Understanding the spatial layout becomes crucial in comprehending 
the current arrangement of streets (Zhang et al., 2019). The existence of densely populated commercial zones, 
for example, can have a profound impact on traffic flow and congestion levels (Waloejo, 2020; Yap et al., 
2022). The geographical distribution of such commercial hubs directly influences the movement patterns of 
vehicles, contributing to the formulation of effective congestion mitigation strategies. Beyond commercial 
zones, residential areas also play a pivotal role in shaping transportation patterns. The significant increase in 
demand of urbanization due to rapidly increasing population asks for development of residential land uses 
(Mirzahossein et al., 2022).  Suburban residential zones, characterized by lower population densities, often 
necessitate increased travel for work-related purposes, consequently elevating trip generation rates. This 
dynamic interaction between land use and travel behavior underscores the importance of accurately 
characterizing the types of buildings and land uses within an urban area. Moreover, land use intricately affects 
the accessibility and connectivity of different regions within an urban landscape. The densification of transport 
nodes orginating form various facilities comprising work, educational, recreational, etc are influenced by the 
transit oriented developments (TOD) (Agyemang et al., 2020). The configuration of roads, proximity of 
transportation hubs, and the distribution of various land uses collectively contribute to the overall traffic 
patterns and transportation network efficiency. Accurate and detailed classification of building types and their 
associated land uses becomes instrumental in conducting transportation analyses with added efficiency. It 
facilitates a more comprehensive understanding of the complex interplay between land use and transportation 
dynamics, enabling urban planners and policymakers to make informed decisions that contribute to optimising 
transportation systems and improving overall urban mobility. Travel Analysis Zones (TAZs) are fundamental 
transportation modeling and analysis building blocks. Their design significantly impacts the quality and 
accuracy of insights derived from such models. A common approach utilizes established Census geographies 
like blocks, block groups, and tracts as base units for TAZ delineation. This ensures data availability and 
compatibility with other sources (You et al., 1998; Moghaddam et al., 2022). Another method emphasizes 
accessibility to transportation infrastructure like roads, rail lines, and transit stations. TAZs are formed based 
on travel times, distance to key network elements (Ducruet & Lugo, 2013). TAZs can be generated focusing 
on the area's homogeneity in landuses and socioeconomic characteristics. This helps to understand the travel 
patterns associated with residential areas, commercial districts and industrial zones (Adams & Tiesdell, 2012). 
Factoring in multiple determinants like geography, networks, and landuse, a more nuanced representation of 
travel behaviour can be achieved (Yang et al., 2022). The primary goal of this study is to illustrate how outputs 
generated by a deep learning-based approach, as described here, can be effectively applied in land-use and 
transportation planning. By leveraging advanced deep learning techniques, this study aims to produce high-
quality building classification data that has information about residential and non-residential structures. 
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Accurate building classification is crucial for informed decision-making in urban planning, as it provides valuable 
insights into the distribution and types of buildings within an area. This information can then support various 
applications, such as optimizing public transportation routes, identifying areas suitable for commercial 
development, managing zoning regulations, and planning infrastructure improvements. Using a deep learning-
based model, the study seeks to offer a more efficient and automated way to generate detailed, up-to-date 
information, which is often challenging and time-consuming to collect using traditional methods. 

2. Methodology 
This study aims to generate high-quality building classification data capable of distinguishing between 
residential and non-residential structures. Accurate building classification is essential for urban planning and 
management, as it offers valuable insights into the spatial distribution and types of buildings in a given area. 
This detailed information plays a pivotal role in supporting various applications, such as optimizing public 
transportation routes, identifying areas suitable for commercial development, managing zoning regulations, 
and planning for infrastructure improvements. We aim to develop a more efficient and automated approach 
to produce up-to-date building utility data using a deep learning-based model. This method addresses the 
challenges of traditional data collection, which is often labor-intensive, time-consuming, and prone to 
inaccuracies. The deep learning model employed in this study processes satellite or aerial images of a given 
area to identify all buildings in the image. Once detected, the model classifies each identified building into 
residential or non-residential categories. The resulting output is a detailed image highlighting the buildings 
and their respective classifications. This provides a clear and easy-to-interpret representation of the area. This 
classified building data can then generate zone-specific maps and be helpful for more informed decision-
making for urban planners, policymakers, and transportation authorities. Additionally, to provide a 
comprehensive understanding of the deep learning model used in this study, we have included a brief 
discussion of its architecture, working principles, performance metrics, and potential limitations. This insight 
offers a holistic view of how the model functions and the extent to which it can contribute to urban and 
transportation planning initiatives. The YOLOV8 (Jocher et al., 2023) model undergoes comprehensive training 
utilizing datasets sourced from SpaceNet-3 (Fig.2) and ISPRS Potsdam (Fig.3), the latter provided by BSF 
Swissphoto. This mixing of diverse datasets enriches the model's learning with a broader range of real-world 
scenarios and geospatial contexts. To facilitate the training process, the complete dataset is partitioned into 
three subsets: Train, Test, and Validation. Notably, modifications are systematically introduced to both the 
model architecture and the training dataset to optimize performance. These modifications aim to refine the 
model’s ability to accurately identify and categorize objects, particularly in the context of geospatial imagery. 
The iterative nature of the training process involves continuous evaluations using the Validation dataset after 
each epoch. This approach ensures that the model’s learning progresses controlled, allowing for adjusting 
parameters and fine-tuning to achieve optimal performance. The convergence of training and validation 
accuracy to predefined criteria is a crucial checkpoint. Once the model consistently meets the desired 
performance standards on both the training and validation sets, it undergoes a rigorous evaluation using 
previously unseen images from the Test dataset. This final assessment gauges the model's generalization 
capabilities and effectiveness in accurately detecting and classifying objects in real-world scenarios outside the 
training data. To showcase the model performance and the utilization of the model, two datasets are used 
such as, SpaceNet 3 Vegas and ISPRS Potsdam. As the model is trained on images from different sensors 
(both aerial and satellite sensors), the learning of the model becomes robust due to different scales, aspects, 
and pixel values. The SpaceNet 3 dataset (Fig.2), originally meant for extracting road networks from satellite 
images, contains a diverse range of buildings. This diversity is highlighted as an important feature for improving 
the training of deep learning models. The size of the images (1300x1300 pixels) and the high spatial resolution 
(30 cm per pixel) are provided, emphasizing the data quality for detailed analysis. The ISPRS Potsdam dataset 
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(Fig.3) is a widely recognized benchmark in remote sensing and aerial image analysis. This dataset provides 
high-resolution aerial imagery of the city of Potsdam, Germany. It is specifically designed to facilitate research 
in tasks such as semantic segmentation, object detection, and classification within urban environments. The 
dataset includes true orthophotos with a ground sampling distance (GSD) of 5 cm, allowing for the precise 
identification and analysis of objects. The diversity and high level of detail in the ISPRS Potsdam dataset can 
be a resource for researchers and practitioners to use in advanced image analysis algorithms for urban area 
mapping. In essence, the training and evaluation methodology outlined underscores a meticulous and iterative 
process involving diverse datasets and continuous assessments to ensure the YOLOV8 model is finely tuned 
and proficient in its geospatial object detection tasks. The utilization of separate Train, Test, and Validation 
sets, along with the adoption of performance criteria, establishes a robust framework for achieving and 
validating the desired level of accuracy and reliability in the model's predictions. The work demonstrated in 
this research is to execute a nuanced classification of building rooftops into two discrete categories: residential 
and non-residential. This classification is pivotal for the subsequent allocation of appropriate zones, a process 
contingent on the density of structures within a specific geographical area. The zoning strategy is 
straightforward: if a given region predominantly features residential structures, it is designated as a residential 
zone; conversely, areas not intended for residential purposes are classified accordingly. The designation of a 
mixed zone pertains to areas showcasing a relatively equitable distribution of various building types. 

 
Fig.1 Methodology diagram 
 
The utilization of zonal data forms the cornerstone for generating a foundational map of the targeted region, 
serving as a crucial resource for diverse transportation planning analyses. Fig.1 encapsulates the entire 
methodology, visually representing the comprehensive process. The validation accuracy, a crucial metric for 
assessing the model’s performance, is presented in Tab.2, offering insights into the reliability and eff’ctiveness 
of the classification and segmentation techniques employed. Additionally, Figure 5 offers illustrative instances 
of the test findings, providing visual validation of the model’s capabilities. The resultant images undergo a 
georeferencing step following the classification and segmentation processes. This georeferencing procedure 
aligns the images geographically, establishing the groundwork for the construction of Transportation Analysis 
Zones (TAZ) base-maps. Notably, all photos are standardized by downsizing them to square images with a 
resolution of 960 pixels, a preparatory step to enhance training efficiency and accuracy. The execution of the 
entire model pipeline, from classification to georeferencing, is conducted on the Python platform. This 
implementation is supported by an array of libraries, including but not limited to numpy, opencv-python, 
pytorch, CUDNN, and others. This technological framework ensures the seamless execution of the research 
methodology, leveraging advanced computational capabilities to achieve accurate and insightful results. In 
summary, the research encompasses a multifaceted approach, integrating image processing, geospatial 
analysis, and deep learning techniques, all executed on a robust computational platform to accomplish the 
study's overarching objective of refined building rooftop classification for transportation planning. 
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(a) 

 
(b) 

Fig.2 (a) Examples of residential buildings (SpaceNet-3); (b) Examples of non-residential buildings (SpaceNet-3)  
 

 
(a) 

 
(b) 

Fig.3 (a) Examples of residential buildings (ISPRS); (b) Examples of non-residential buildings (ISPRS) 
 
YOLOV8, as illustrated in Fig.4, inherits a foundational architecture akin to its precursor, YOLOV5, while 
introducing augmentations that contribute to the refinement of its training and prediction capabilities. Notably, 
a pivotal enhancement incorporated into this model is integrating a C2F module (Terven & Cordova-Esparza, 
2023). The C2F module functions as a cross-stage partial bottleneck featuring two convolution modules. This 
architectural addition enables YOLOV8 to amalgamate high-level features containing critical information, 
thereby facilitating an augmentation in detection accuracy and a reduction in box loss. 
One of the distinctive attributes of the model architecture lies in incorporating a dual decoupled head, coupled 
with the absence of anchors. This unique configuration empowers the model to autonomously handle diverse 
tasks, encompassing detection, classification, and regression. Eliminating anchors enhances the model's 
adaptability in addressing myriad scenarios, improving overall performance. Moreover, the architecture 
embraces various design branches, each assigned specific roles to improve overall correctness. A noteworthy 
aspect of YOLOV8 is its use of the sigmoid function to predict the probability of a bounding box surrounding 
a targeted object. Simultaneously, the softmax function is employed to compute the probability of a detected 
object belonging to a designated class. This dual-functionality approach enhances the model's precision and 
reliability in both localizing and categorizing objects within the given context. The meticulously crafted 
architecture, including these features, collectively positions YOLOV8 as an advanced and versatile model 
proficient in multifaceted object detection tasks. 
The YOLOV8 model is highly adaptable and capable of training and making predictions on images or videos of 
any size. While it comes with a default frame size of 640x640 pixels for training and testing, users can adjust 
this frame size according to their specific requirements. Generally, high-resolution images involve larger frame 
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sizes, which can enhance the accuracy and performance of the model during both the training and inference 
stages. However, this improvement comes at the cost of increased computational resource usage. The YOLOV8 
model is available in multiple variants, ranging from YOLOV8n (nano) to YOLOv8x (extra-large), each with 
different numbers of parameters. These variants determine how complex and detailed the model's learning 
process is. Models with more parameters, such as YOLOv8x, tend to achieve better learning and produce more 
accurate results, but they also demand significantly more computational resources and longer training time. 
It’s recommended to use a GPU-enabled environment for optimal performance, as this significantly speeds up 
the training and inference processes. Although the model can also run on CPUs, using a GPU accelerates the 
computations, making it more efficient, especially for larger datasets or higher-resolution images. 
 

 
Fig.4 YOLOV8 Base architecture 
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SL No. Metric Formula 

1 Mean Avearage Precision (mAP) !"# = 1
&'"#!

"

!#$
 

2 Precision (P) 
(#

(# + *# 

3 Recall (R) 
(#

(# + *& 

4 Accuracy (# + (&
(# + *& + (& + *& 

Tab.1 Perfromance metrics details 

3. Results and discussion 
The YOLOV8 model architecture stands out for its versatility, demonstrating proficiency in a spectrum of 
computer vision tasks, including but not limited to segmentation, object identification, picture classification, 
object tracking, and posture estimation. This broad applicability has contributed significantly to the model's 
popularity, attributed to its simplistic design, user-friendly interface, and adaptability to various data input 
formats. 
In the context of this study, the YOLOV8 model architecture is leveraged for the specific task of building 
classification. The dataset employed encompasses over 500 images, with approximately 300 sourced from the 
SpaceNet 3 dataset and the remaining images derived from the Potsdam dataset. In preparation for the 
training phase, all original images undergo a meticulous image augmentation process to enhance the model's 
training accuracy by introducing diverse variations to the dataset. The optimization process is facilitated by 
the implementation of Stochastic Gradient Descent (SGD) as the optimizer, with an initial learning rate set at 
0.007. To ensure stability and effective convergence during training, the momentum is finely tuned to a value 
of 0.937. A judicious choice of hyperparameters is also made, with the weight decay parameter set at 0.0005. 
These optimization parameters collectively contribute to the model's ability to learn and generalize effectively 
from the training dataset. Tab.2 is enlisted to provide a comprehensive overview of the performance metrics 
achieved by the YOLOV8 model in the course of its application to the building classification task. This table 
serves as a valuable reference point for evaluating the efficacy and accuracy of the model in relation to the 
specific objectives outlined in the study. 

Class Precision Recall mAP(50) 

Overall 0.944 0.892 0.945 

CB 0.936 0.805 0.903 

RB 0.953 0.979 0.986 
Tab.2 Perfromance metrics. CB = Non-residential Building; RB = Residential Building 

The primary objective of this study is the nuanced categorization of building rooftops into distinct classes, 
specifically differentiating between residential and non-residential structures. This categorization serves as a 
pivotal step in the subsequent assignment of appropriate zones based on the density of buildings within a 
given geographic area. The zoning process operates on the premise that areas predominantly characterized 
by residential structures are designated as residential zones, while those dominated by non-residential 
structures are categorized as non-residential zones. A mixed zone designation is applied to areas where the 
proportion of each building type is relatively balanced. This zoning methodology lays the foundation for the 
creation of a detailed and informative map of the targeted area. By systematically incorporating the zonal data 
into the mapping process, the resulting cartographic representation provides a comprehensive overview of the 
spatial distribution of residential and non-residential structures. This map, enriched with zonal insights, serves 
as a valuable tool for conducting various transportation planning studies. The utility of this approach extends 
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beyond mere categorization, as the zoning information encapsulates the socio-economic and land-use 
characteristics of the area. Such a detailed understanding of the spatial composition becomes instrumental in 
making informed decisions regarding transportation planning, urban development, and resource allocation. 
The methodological framework outlined in this study not only contributes to building classification but also 
facilitates a broader understanding of the built environment, thereby enhancing the applicability of the 
generated maps for strategic urban planning initiatives. 
In order to create a zone-dispersed map, it is very essential to incorporate geographic information. This will 
enable the alignment of images with a spatial reference. In order to include spatial information in the resulting 
segmented image, the geographical information is extracted from the input images and used as a reference 
for each individual image. Fig.6 illustrates scenes derived from the categorized and segmented photos 
reflecting the datasets utilized in this investigation. 
 

 
Fig.5 Examples of detection results (Cyan: Non-residential buildings; Yellow: Residential buildings) 
 
Instance segmentation is used in this study as the desired objects are identified, classified, and segmented. 
Any instance segmentation model requires polygon annotations for training, and the polygons are made 
meticulously to produce better annotations, yield better training accuracy. Manual preparation of annotation 
in terms of the polygons is labour-intensive and time-consuming, hence automatic or semi-automatic mask 
generation algorithms are gaining popularity. Most of the instance segmentation models' work pace is also 
contingent on the hardware capabilities, so dealing with more pixel density calls for better computational 
power. 
The model used in this study relies on pixel-based information, and to enhance the learning, size, shape, 
aspect, and scale of the targeted objects (here, rooftops of the buildings) are also considered. To confirm 
building types, every building from every image in the training dataset was checked by overlaying the images 
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on the Googe map. To ensure better learning and minimal occurrence of classification as well as segmentation 
error, image augmentations such as rotation (90°), flip (both vertical and horizontal) are applied. While testing 
the model's performance, it was found that residential buildings with slender appearance are mostly 
misclassified as non-residential buildings; to mitigate that, reannotation of such buildings is done. 

 
Fig.6 Examples of detection results and land use map preparation 

The presented illustration (Fig.7) servs as a visual representation of the intricate process of generating 
pertinent cartographic information. The focal point of this process involves the careful selection of scenes from 
the SpaceNet 3 Vegas dataset. These chosen scenes are strategically employed to form a composite image of 
larger dimensions. This composite image, representative of a broader spatial context, is subsequently 
introduced into the model pipeline. Within the model pipeline, the composite image undergoes a series of 
computational steps and analyses, culminating in generation of output. This output, derived encapsulates 
valuable cartographic information with enhanced contextual insights. The resulting image, now enriched with 
the extracted data, is purposefully employed in delineating and categorizing distinct zones within the 
geographic are under consideration. 

 
Fig.7 Insert here image description  
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The zones identified in the resulting image are further classified into residential, non-residential, and mixed 
zones. This classification process contributes to the creation of comprehensive cartographic representation, 
effectively conveying the spatial distribution characteristics of different structures.  
The study's initial phase involved using georeferenced images from both datasets. The inherent georeferencing 
of these images facilitated a seamless alignment process, enabling the synthesis of accurate maps. 
Georeferencing is a crucial step in geospatial analysis, as it establishes the spatial location and positioning of 
features within an image in relation to real-world coordinates. It is imperative to note that standard instance 
segmentation models inherently lack the capability to transfer geospatial information from the input image to 
the output image. Recognizing this limitation, a subsequent step was introduced to address the geospatial 
integrity of the output. Consequently, all output images underwent an additional georeferencing process, 
aligning them with respect to the geospatial information present in the input images (Khatua et al., 2024). 
This meticulous georeferencing of the output images is paramount for maintaining spatial accuracy and 
ensuring that the generated maps faithfully represent the geographical features depicted in the input imagery. 
The alignment process contributes to the preservation of geospatial relationships, allowing for meaningful 
comparisons and analyses across different datasets and facilitating further geospatial operations with 
precision. 
The YOLOV8 model’s segmentation effectiveness relies on its detection capability. This means the 
segmentation quality is affected by the detector models. It outlines three key challenges related to using 
bounding boxes: overlap, dataset size, and unnecessary pixels. Overlapping occurs when te objects and close 
together, leading to potential confusion during training. Narrow objects might results in bounding boxes 
containing many irrelevant pixels., which can interfere the model’s learning process by blending the target 
object with nearby pixels. 
In summary, the entire workflow underscores the critical role of georeferencing in our study. The 
georeferenced images serve as the foundation for accurate mapping, and the subsequent alignment of output 
images ensures the preservation of geospatial context, enhancing the reliability and utility of the generated 
cartographic information. 

4. Conclusion 
The study delves into the intricate realm of instance segmentation, leveraging its capabilities for identifying, 
classifying, and segmenting desired objects, with a specific focus on rooftops in building structures. The 
process involves meticulous polygon annotations for model training, a traditionally labour-intensive and time-
consuming task. To alleviate this, this study explores automatic or semi-automatic mask generation algorithms. 
The model adopted relies on pixel-based information, factoring in the targeted objects' size, shape, aspect 
and scale, and incorporates image augmentation for enhanced learning. However, challenges surface during 
testing, particularly in the misclassification of slender residential buildings as non-residential buildings, 
prompting the need for reannotation to mitigate errors. 
Currently, this model has been tested only on planned urban environments where buildings exhibit distinct 
and easily recognizable features. These well-defined attributes make it easier for the model to learn and 
accurately detect objects, resulting in enhanced performance. However, the model's capabilities and additional 
limitations may become more apparent when applied to rural areas or urban settings characterized by organic 
and irregular development. In such environments, the architectural features are less structured, and buildings 
vary widely in shape, size, and arrangement, posing a greater challenge for accurate detection and 
segmentation. To thoroughly evaluate the model's adaptability and robustness in these complex scenarios, it 
will be necessary to train and test it on additional datasets that capture the diversity of rural and organically 
developed urban landscapes. Expanding this evaluation to include such datasets represents an important 
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direction for future research, as it will help identify potential shortcomings and guide further improvements in 
the model's performance across different geographic settings. 
The study addresses the critical aspect of georeferencing, acknowledging the inherent limitation of instance 
segmentation models in transferring geospatial information. The georeferencing of images, both input and 
output, is meticulously executed to ensure accurate alignment, fostering meaningful comparisons and 
analyses. This process is pivotal for maintaining spatial accuracy, enhancing the reliability of the generated 
maps, and enabling effective geospatial operations. 
In summary, this research contributes to the advancement of instance segmentation methodologies and 
showcases the integration of geospatial considerations in cartographic information generation. The proposed 
workflow emphasizes the synergy between advanced computer vision techniques, spatial analysis, and 
georeferencing for robust and accurate results in diverse applications, from object identification to cartographic 
mapping. 
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