TeMA

Journal of Land Use, Mobility and Environment

This special issue collects a selection of peer-review papers presented at the 8th International Conference INPUT 2014 titled "Smart City: planning for energy, transportation and sustainability of urban systems", held on 4-6 June in Naples, Italy. The issue includes recent developments on the theme of relationship between innovation and city management and planning.

Tema is the Journal of Land use, Mobility and Environment and offers papers with a unified approach to planning and mobility. TeMA Journal has also received the Sparc Europe Seal of Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ).

Smart City planning for energy, transportation and sustainability of the urban system

Special issue, June 2014

print ISSN 1970-9889 e-ISSN 1970-9870 University of Naples Federico II

SMART CITY

PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM

Special Issue, June 2014

Published by

Laboratory of Land Use Mobility and Environment DICEA - Department of Civil, Architectural and Environmental Engineering University of Naples "Federico II"

TeMA is realised by CAB - Center for Libraries at "Federico II" University of Naples using Open Journal System

Editor-in-chief: Rocco Papa print ISSN 1970-9889 | on line ISSN 1970-9870 Lycence: Cancelleria del Tribunale di Napoli, n° 6 of 29/01/2008

Editorial correspondence Laboratory of Land Use Mobility and Environment DICEA - Department of Civil, Architectural and Environmental Engineering University of Naples "Federico II" Piazzale Tecchio, 80 80125 Naples web: www.tema.unina.it e-mail: redazione.tema@unina.it

TeMA. Journal of Land Use, Mobility and Environment offers researches, applications and contributions with a unified approach to planning and mobility and publishes original inter-disciplinary papers on the interaction of transport, land use and environment. Domains include engineering, planning, modeling, behavior, economics, geography, regional science, sociology, architecture and design, network science, and complex systems.

The Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR) classified TeMA as scientific journals in the Areas 08. TeMA has also received the Sparc Europe Seal for Open Access Journals released by Scholarly Publishing and Academic Resources Coalition (SPARC Europe) and the Directory of Open Access Journals (DOAJ). TeMA is published under a Creative Commons Attribution 3.0 License and is blind peer reviewed at least by two referees selected among high-profile scientists by their competences. TeMA has been published since 2007 and is indexed in the main bibliographical databases and it is present in the catalogues of hundreds of academic and research libraries worldwide.

EDITOR- IN-CHIEF

Rocco Papa, Università degli Studi di Napoli Federico II, Italy

EDITORIAL ADVISORY BOARD

Luca Bertolini, Universiteit van Amsterdam, Netherlands Virgilio Bettini, Università Iuav di Venezia, Italy Dino Borri, Politecnico di Bari, Italy Enrique Calderon, Universidad Politécnica de Madrid, Spain Roberto Camagni, Politecnico di Milano, Italy Robert Leonardi, London School of Economics and Political Science, United Kingdom Raffaella Nanetti, College of Urban Planning and Public Affairs, United States Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy Rocco Papa, Università degli Studi di Napoli Federico II, Italy

Editors

Agostino Nuzzolo, Università degli Studi di Roma Tor Vergata, Italy Enrique Calderon, Universidad Politécnica de Madrid, Spain Luca Bertolini, Universiteit van Amsterdam, Netherlands Romano Fistola, Dept. of Engineering - University of Sannio - Italy, Italy Adriana Galderisi, Università degli Studi di Napoli Federico II, Italy Carmela Gargiulo, Università degli Studi di Napoli Federico II, Italy Giuseppe Mazzeo, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy

EDITORIAL SECRETARY

Rosaria Battarra, CNR - Istituto per gli Studi sulle Società del Mediterraneo, Italy Andrea Ceudech, TeMALab, Università degli Studi di Napoli Federico II, Italy Rosa Anna La Rocca, TeMALab, Università degli Studi di Napoli Federico II, Italy Enrica Papa, University of Amsterdam, Netherlands

This special issue of TeMA collects the papers presented at the 8th International Conference INPUT 2014 which will take place in Naple's from 4th to 6th June. The Conference focuses on one of the central topics within the urban studies debate and combines, in a new perspective, researches concerning the relationship between innovation and management of city changing.

CONFERENCE COMMITTEE

Dino Borri, Polytechnic University of Bari, Italy Arnaldo Cecchini, University of Sassari, Italy Romano Fistola, University of Sannio, Italy Lilli Gargiulo, University of Naples Federico II, Italy Giuseppe B. Las Casas, University of Basilicata, Italy Agostino Nuzzolo, University of Rome, Italy Rocco Papa, University of Naples Federico II, Italy Giovanni Rabino, Polytechnic University of Milan, Italy Maurizio Tira, University of Brescia, Italy Corrado Zoppi, University of Cagliari, Italy

SCIENTIFIC COMMITTEE

Emanuela Abis, University of Cagliari, Italy Nicola Bellini, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy Mariolina Besio Dominici, University of Genoa, Italy Ivan Blecic, University of Sassari, Italy Dino Borri, Polytechnic University of Bari, Italy Grazia Brunetta, Polytechnic University of Turin, Italy Roberto Busi, University of Brescia, Italy Domenico Camarda, Polytechnic University of Bari, Italy Michele Campagna, University of Cagliari, Italy Arnaldo Cecchini, University of Sassari, Italy Donatella Cialdea, University of Molise, Italy Valerio Cutini, University of Pisa, Italy, Italy Luciano De Bonis, University of Molise, Italy Andrea De Montis, University of Sassari, Italy Filippo de Rossi, University of Sannio (Dean of the University of Sannio), Italy Lidia Diappi, Polytechnic University of Milan, Italy Isidoro Fasolino, University of Salerno, Italy Mariano Gallo, University of Sannio, Italy Lilli Gargiulo, University of Naples Federico II, Italy Roberto Gerundo, University of Salerno, Italy Paolo La Greca, University of Catania, Italy Giuseppe B. Las Casas, University of Basilicata, Italy Robert Laurini, University of Lyon, France Antonio Leone, Tuscia University, Italy Anna Loffredo, Institute of Management, Scuola Superiore Sant'Anna Pisa, Italy Silvana Lombardo, University of Pisa, Italy Giovanni Maciocco, University of Sassari, Italy Giulio Maternini, University of Brescia, Italy

Francesco Domenico Moccia, University of Naples Federico II, Italy Bruno Montella, University of Naples "Federico II" (Director of DICEA), Italy Beniamino Murgante, University of Basilicata, Italy Agostino Nuzzolo, University of Rome, Italy Sylvie Occelli, IRES Turin, Italy Rocco Papa, University of Naples Federico II, Italy Maria Paradiso, University of Sannio, Italy Domenico Patassini, IUAV, Venice, Italy Michele Pezzagno, University of Brescia, Italy Fulvia Pinto, Polytechnic University of Milan, Italy Giovanni Rabino, Polytechnic University of Milan, Italy Giuseppe Roccasalva, Polytechnic University of Turin, Italy Bernardino Romano, University of L'Aquila, Italy Francesco Russo, Mediterranean University Reggio Calabria, Italy Michelangelo Russo, University of Naples Federico II, Italy Ferdinando Semboloni, University of Firenze, Italy Agata Spaziante, Polytechnic University of Turin, Italy Michela Tiboni, University of Brescia, Italy Maurizio Tira, University of Brescia, Italy Simona Tondelli, University of Bologna, Italy Umberto Villano, University of Sannio (Director of DING), Italy Ignazio Vinci, University of Palermo, Italy Corrado Zoppi, University of Cagliari, Italy

LOCAL SCIENTIFIC COMMITTEE

Rosaria Battarra, ISSM, National Research Council, Italy Romano Fistola, DING, University of Sannio, Italy Lilli Gargiulo, DICEA, University of Naples Federico II, Italy Adriana Galderisi, DICEA, University of Naples Federico II, Italy Rosa Anna La Rocca, DICEA, University of Naples Federico II, Italy Giuseppe Mazzeo, ISSM, National Research Council, Italy Enrica Papa, University of Amsterdam, Netherlands

LOCAL ADMINISTRATIVE TEAM

Gennaro Angiello, TeMA Lab, University of Naples Federico II, Italy Gerardo Carpentieri, TeMA Lab, University of Naples Federico II, Italy Stefano Franco, TeMA Lab, University of Naples Federico II, Italy Laura Russo, TeMA Lab, University of Naples Federico II, Italy Floriana Zucaro, TeMA Lab, University of Naples Federico II, Italy

FIGHTH INTERNATIONAL CONFERENCE INPUT 2014

SMART CITY. PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE **URBAN SYSTEM**

This special issue of TeMA collects the papers presented at the Eighth International Conference INPUT, 2014, titled "Smart City. Planning for energy, transportation and sustainability of the urban system" that takes place in Naples from 4 to 6 of June 2014.

INPUT (Innovation in Urban Planning and Territorial) consists of an informal group/network of academic researchers Italians and foreigners working in several areas related to urban and territorial planning. Starting from the first conference, held in Venice in 1999, INPUT has represented an opportunity to reflect on the use of Information and Communication Technologies (ICTs) as key planning support tools. The theme of the eighth conference focuses on one of the most topical debate of urban studies that combines, in a new perspective, researches concerning the relationship between innovation (technological, methodological, of process etc..) and the management of the changes of the city. The Smart City is also currently the most investigated subject by TeMA that with this number is intended to provide a broad overview of the research activities currently in place in Italy and a number of European countries. Naples, with its tradition of studies in this particular research field, represents the best place to review progress on what is being done and try to identify some structural elements of a planning approach.

Furthermore the conference has represented the ideal space of mind comparison and ideas exchanging about a number of topics like: planning support systems, models to geo-design, gualitative cognitive models and formal ontologies, smart mobility and urban transport, Visualization and spatial perception in urban planning innovative processes for urban regeneration, smart city and smart citizen, the Smart Energy Master project, urban entropy and evaluation in urban planning, etc..

The conference INPUT Naples 2014 were sent 84 papers, through a computerized procedure using the website www.input2014.it . The papers were subjected to a series of monitoring and control operations. The first fundamental phase saw the submission of the papers to reviewers. To enable a blind procedure the papers have been checked in advance, in order to eliminate any reference to the authors. The review was carried out on a form set up by the local scientific committee. The review forms received were sent to the authors who have adapted the papers, in a more or less extensive way, on the base of the received comments. At this point (third stage), the new version of the paper was subjected to control for to standardize the content to the layout required for the publication within TeMA. In parallel, the Local Scientific Committee, along with the Editorial Board of the magazine, has provided to the technical operation on the site TeMA (insertion of data for the indexing and insertion of pdf version of the papers). In the light of the time's shortness and of the high number of contributions the Local Scientific Committee decided to publish the papers by applying some simplifies compared with the normal procedures used by TeMA. Specifically:

- Each paper was equipped with cover, TeMA Editorial Advisory Board, INPUT Scientific Committee, introductory page of INPUT 2014 and summary;
- Summary and sorting of the papers are in alphabetical order, based on the surname of the first author;
- Each paper is indexed with own DOI codex which can be found in the electronic version on TeMA website (www.tema.unina.it). The codex is not present on the pdf version of the papers.

SMART CITY PLANNING FOR ENERGY, TRANSPORTATION AND SUSTAINABILITY OF THE URBAN SYSTEM Special Issue, June 2014

Contents

1.	The Plan in Addressing the Post Shock Conflicts 2009-2014. A First Balance Sheet of the Reconstruction of L'Aquila Fabio Andreassi, Pierluigi Properzi	1-13
2.	Assessment on the Expansion of Basic Sanitation Infrastructure. In the Metropolitan Area of Belo Horizonte - 2000/2010 Grazielle Anjos Carvalho	15-26
3.	Temporary Dwelling of Social Housing in Turin. New Responses to Housing Discomfort Giulia Baù, Luisa Ingaramo	27-37
4.	Smart Communities. Social Innovation at the Service of the Smart Cities Massimiliano Bencardino, Ilaria Greco	39-51
5.	Online Citizen Reporting on Urban Maintenance: A Collection, Evaluation and Decision Support System Ivan Blečić, Dario Canu, Arnaldo Cecchini, Giuseppe Andrea Trunfio	53-63
6.	Walkability Explorer. An Evaluation and Design Support Tool for Walkability Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello, Giuseppe Andrea Trunfio	65-76
7.	Diachronic Analysis of Parking Usage: The Case Study of Brescia Riccardo Bonotti, Silvia Rossetti, Michela Tiboni, Maurizio Tira	77-85
8.	Crowdsourcing. A Citizen Participation Challenge Júnia Borges, Camila Zyngier	87-96
9.	Spatial Perception and Cognition Review. Considering Geotechnologies as Urban Planning Strategy Júnia Borges, Camila Zyngier, Karen Lourenço, Jonatha Santos	97-108

10.	Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector Dino Borri, Laura Grassini	109-127
11.	Learning and Sharing Technology in Informal Contexts. A Multiagent-Based Ontological Approach Dino Borri, Domenico Camarda, Laura Grassini, Mauro Patano	129-140
12.	Smartness and Italian Cities. A Cluster Analysis Flavio Boscacci, Ila Maltese, Ilaria Mariotti	141-152
13.	Beyond Defining the Smart City. Meeting Top-Down and Bottom-Up Approaches in the Middle Jonas Breuer, Nils Walravens, Pieter Ballon	153-164
14.	Resilience Through Ecological Network Grazia Brunetta, Angioletta Voghera	165-173
15.	ITS System to Manage Parking Supply: Considerations on Application to the "Ring" in the City of Brescia Susanna Bulferetti, Francesca Ferrari, Stefano Riccardi	175-186
16.	Formal Ontologies and Uncertainty. In Geographical Knowledge Matteo Caglioni, Giovanni Fusco	187-198
17.	Geodesign From Theory to Practice: In the Search for Geodesign Principles in Italian Planning Regulations Michele Campagna, Elisabetta Anna Di Cesare	199-210
18.	Geodesign from Theory to Practice: From Metaplanning to 2nd Generation of Planning Support Systems Michele Campagna	211-221
19.	The Energy Networks Landscape. Impacts on Rural Land in the Molise Region Donatella Cialdea, Alessandra Maccarone	223-234
20.	Marginality Phenomena and New Uses on the Agricultural Land. Diachronic and Spatial Analyses of the Molise Coastal Area Donatella Cialdea, Luigi Mastronardi	235-245
21.	Spatial Analysis of Urban Squares. 'Siccome Umbellico al corpo dell'uomo' Valerio Cutini	247-258

22.	Co-Creative, Re-Generative Smart Cities. Smart Cities and Planning in a Living Lab Perspective 2 Luciano De Bonis, Grazia Concilio, Eugenio Leanza, Jesse Marsh, Ferdinando Trapani	259-270
23.	The Model of Voronoi's Polygons and Density: Diagnosis of Spatial Distribution of Education Services of EJA in Divinópolis, Minas Gerais, Brazil Diogo De Castro Guadalupe, Ana Clara Mourão Moura	271-283
24.	Rural Architectural Intensification: A Multidisciplinar Planning Tool Roberto De Lotto, Tiziano Cattaneo, Cecilia Morelli Di Popolo, Sara Morettini, Susanna Sturla, Elisabetta Venco	285-295
25.	Landscape Planning and Ecological Networks. Part A. A Rural System in Nuoro, Sardinia Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda, Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica, Luigi Laudari, Carmelo Riccardo Fichera	297-307
26.	Landscape Planning and Ecological Networks. Part B. A Rural System in Nuoro, Sardinia Andrea De Montis, Maria Antonietta Bardi, Amedeo Ganciu, Antonio Ledda, Simone Caschili, Maurizio Mulas, Leonarda Dessena, Giuseppe Modica, Luigi Laudari, Carmelo Riccardo Fichera	309-320
27.	Sea Guidelines. A Comparative Analysis: First Outcomes Andrea De Montis, Antonio Ledda, Simone Caschili, Amedeo Ganciu, Mario Barra, Gianluca Cocco, Agnese Marcus	321-330
28.	Energy And Environment in Urban Regeneration. Studies for a Method of Analysis of Urban Periphery Paolo De Pascali, Valentina Alberti, Daniela De Ioris, Michele Reginaldi	331-339
29.	Achieving Smart Energy Planning Objectives. The Approach of the Transform Project Ilaria Delponte	341-351
30.	From a Smart City to a Smart Up-Country. The New City-Territory of L'Aquila Donato Di Ludovico, Pierluigi Properzi, Fabio Graziosi	353-364
31.	Geovisualization Tool on Urban Quality. Interactive Tool for Urban Planning Enrico Eynard, Marco Santangelo, Matteo Tabasso	365-375

32.	Visual Impact in the Urban Environment. The Case of Out-of-Scale Buildings Enrico Fabrizio, Gabriele Garnero	377-388
33.	Smart Dialogue for Smart Citizens: Assertive Approaches for Strategic Planning Isidoro Fasolino, Maria Veronica Izzo	389-401
34.	Digital Social Networks and Urban Spaces Pablo Vieira Florentino, Maria Célia Furtado Rocha, Gilberto Corso Pereira	403-415
35.	Social Media Geographic Information in Tourism Planning Roberta Floris, Michele Campagna	417-430
36.	Re-Use/Re-Cycle Territories: A Retroactive Conceptualisation for East Naples Enrico Formato, Michelangelo Russo	431-440
37.	Urban Land Uses and Smart Mobility Mauro Francini, Annunziata Palermo, Maria Francesca Viapiana	441-452
38.	The Design of Signalised Intersections at Area Level. Models and Methods Mariano Gallo, Giuseppina De Luca, Luca D'acierno	453-464
39.	Piano dei Servizi. Proposal for Contents and Guidelines Roberto Gerundo, Gabriella Graziuso	465-476
40.	Social Housing in Urban Regeneration. Regeneration Heritage Existing Building: Methods and Strategies Maria Antonia Giannino, Ferdinando Orabona	477-486
41.	Using GIS to Record and Analyse Historical Urban Areas Maria Giannopoulou, Athanasios P. Vavatsikos, Konstantinos Lykostratis, Anastasia Roukouni	487-497
42.	Network Screening for Smarter Road Sites: A Regional Case Attila Grieco, Chiara Montaldo, Sylvie Occelli, Silvia Tarditi	499-509
43.	Li-Fi for a Digital Urban Infrastructure: A Novel Technology for the Smart City Corrado Iannucci, Fabrizio Pini	511-522
44.	Open Spaces and Urban Ecosystem Services. Cooling Effect towards Urban Planning in South American Cities Luis Inostroza	523-534

45.	From RLP to SLP: Two Different Approaches to Landscape Planning Federica Isola, Cheti Pira	535-543
46.	Revitalization and its Impact on Public. Space Organization A Case Study of Manchester in UK, Lyon in France and Łódź in Poland Jarosław Kazimierczak	545-556
47.	Geodesign for Urban Ecosystem Services Daniele La Rosa	557-565
48.	An Ontology of Implementation Plans of Historic Centers: A Case Study Concerning Sardinia, Italy Sabrina Lai, Corrado Zoppi	567-579
49.	Open Data for Territorial Specialization Assessment. Territorial Specialization in Attracting Local Development Funds: an Assessment. Procedure Based on Open Data and Open Tools Giuseppe Las Casas, Silvana Lombardo, Beniamino Murgante, Piergiuseppe Pontrandolfi, Francesco Scorza	581-595
50.	Sustainability And Planning. Thinking and Acting According to Thermodinamics Laws Antonio Leone, Federica Gobattoni, Raffaele Pelorosso	597-606
51.	Strategic Planning of Municipal Historic Centers. A Case Study Concerning Sardinia, Italy Federica Leone, Corrado Zoppi	607-619
52.	A GIS Approach to Supporting Nightlife Impact Management: The Case of Milan Giorgio Limonta	621-632
53.	Dealing with Resilience Conceptualisation. Formal Ontologies as a Tool for Implementation of Intelligent Geographic Information Systems Giampiero Lombardini	633-644
54.	Social Media Geographic Information: Recent Findings and Opportunities for Smart Spatial Planning Pierangelo Massa, Michele Campagna	645-658
55.	Zero Emission Mobility Systems in Cities. Inductive Recharge System Planning in Urban Areas Giulio Maternini, Stefano Riccardi, Margherita Cadei	659-669

56.	Urban Labelling: Resilience and Vulnerability as Key Concepts for a Sustainable Planning Giuseppe Mazzeo	671-682
57.	Defining Smart City. A Conceptual Framework Based on Keyword Analysis Farnaz Mosannenzadeh, Daniele Vettorato	683-694
58.	Parametric Modeling of Urban Landscape: Decoding the Brasilia of Lucio Costa from Modernism to Present Days Ana Clara Moura, Suellen Ribeiro, Isadora Correa, Bruno Braga	695-708
59 .	Smart Mediterranean Logics. Old-New Dimensions and Transformations of Territories and Cites-Ports in Mediterranean Emanuela Nan	709-718
60.	Mapping Smart Regions. An Exploratory Approach Sylvie Occelli, Alessandro Sciullo	719-728
61.	Planning Un-Sustainable Development of Mezzogiorno. Methods and Strategies for Planning Human Sustainable Development Ferdinando Orabona, Maria Antonia Giannino	729-736
62.	The Factors Influencing Transport Energy Consumption in Urban Areas: a Review Rocco Papa, Carmela Gargiulo, Gennaro Angiello	737-747
63.	Integrated Urban System and Energy Consumption Model: Residential Buildings Rocco Papa, Carmela Gargiulo, Gerardo Carpentieri	749-758
64.	Integrated Urban System and Energy Consumption Model: Public and Singular Buildings Rocco Papa, Carmela Gargiulo, Mario Cristiano	759-770
65.	Urban Smartness Vs Urban Competitiveness: A Comparison of Italian Cities Rankings Rocco Papa, Carmela Gargiulo, Stefano Franco, Laura Russo	771-782
66.	Urban Systems and Energy Consumptions: A Critical Approach Rocco Papa, Carmela Gargiulo, Floriana Zucaro	783-792
67.	Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans Rocco Papa, Carmela Gargiulo, Floriana Zucaro	793-804

68.	Bio-Energy Connectivity And Ecosystem Services. An Assessment by Pandora 3.0 Model for Land Use Decision Making Raffaele Pelorosso, Federica Gobattoni, Francesco Geri, Roberto Monaco, Antonio Leone	805-816
69.	Entropy and the City. GHG Emissions Inventory: a Common Baseline for the Design of Urban and Industrial Ecologies Michele Pezzagno, Marco Rosini	817-828
70.	Urban Planning and Climate Change: Adaptation and Mitigation Strategies Fulvia Pinto	829-840
71.	Urban Gaming Simulation for Enhancing Disaster Resilience. A Social Learning Tool for Modern Disaster Risk Management Sarunwit Promsaka Na Sakonnakron, Pongpisit Huyakorn, Paola Rizzi	841-851
72.	Visualisation as a Model. Overview on Communication Techniques in Transport and Urban Planning Giovanni Rabino, Elena Masala	853-862
73.	Ontologies and Methods of Qualitative Research in Urban Planning Giovanni Rabino	863-869
74.	City/Sea Searching for a New Connection. Regeneration Proposal for Naples Waterfront Like an Harbourscape: Comparing Three Case Studies Michelangelo Russo, Enrico Formato	871-882
75.	Sensitivity Assessment. Localization of Road Transport Infrastructures in the Province of Lucca Luisa Santini, Serena Pecori	883-895
76.	Creating Smart Urban Landscapes. A Multimedia Platform for Placemaking Marichela Sepe	897-907
77.	Virtual Power Plant. Environmental Technology Management Tools of The Settlement Processes Maurizio Sibilla	909-920
78.	Ecosystem Services and Border Regions. Case Study from Czech – Polish Borderland Marcin Spyra	921-932
79.	The Creative Side of the Reflective Planner. Updating the Schön's Findings Maria Rosaria Stufano Melone, Giovanni Rabino	933-940

80.	Achieving People Friendly Accessibility. Key Concepts and a Case Study Overview Michela Tiboni, Silvia Rossetti	941-951
81.	Planning Pharmacies: An Operational Method to Find the Best Location Simona Tondelli, Stefano Fatone	953-963
82.	Transportation Infrastructure Impacts Evaluation: The Case of Egnatia Motorway in Greece Athanasios P. Vavatsikos, Maria Giannopoulou	965-975
83.	Designing Mobility in a City in Transition. Challenges from the Case of Palermo Ignazio Vinci, Salvatore Di Dio	977-988
84.	Considerations on the Use of Visual Tools in Planning Processes: A Brazilian Experience Camila Zyngier, Stefano Pensa, Elena Masala	989-998

TeMA INPUT 2014 Print ISSN 1970-9889, e- ISSN 1970-9870

DOI available on the on-line version

Licensed under the Creative Commons Attribution Non Commercial License 3.0 www.tema.unina.it

SPECIAL ISSUE

Eighth International Conference INPUT Smart City - Planning for Energy, Transportation and Sustainability of the Urban System

Naples, 4-6 June 2014

BIO-ENERGY CONNECTIVITY AND ECOSYSTEM SERVICES AN ASSESSMENT BY PANDORA 3.0 MODEL FOR LAND USE

DECISION MAKING

RAFFAELE PELOROSSO^a, FEDERICA GOBATTONI^a, FRANCESCO GERI^a, ROBERTO MONACO^b, ANTONIO LEONE^a

^a DAFNE Department, Tuscia University, Italy e-mail: pelorosso@unitus.it; f.gobattoni@unitus.it; geri.francesco@gmail.com; leone@unitus.it

> ^b DIST, Politecnico di Torino, Italy e-mail: roberto.monaco@polito.it

ABSTRACT

Landscape connectivity is one of the major issues related to biodiversity conservation and to the delivery of Ecosystem Services (ES). Several models were developed to assess landscape connectivity but lack of data and mismatching scale of analysis often represent insurmountable constraints for the correct evaluation and integration of ecological connectivity into plans and assessment procedures. In this paper a procedure for ES assessment related with Habitat and Bio-Energy Landscape Connectivity (BELC) is proposed. The method is based on the connectivity measure furnished by the last version of PANDORA model and uses a modified formulation of current ES evaluation. The implementation of the model in a real case has highlighted its potential multi-scale workability. The spatial approach of the model aims at furnishing a further tool for the spread of ES and landscape ecology concepts into procedures of assessment (e.g. EIA, SEA) and land use planning at different administrative scales.

KEYWORDS

Landscape connectivity, Urban planning, Environmental Assessment, Environmental modeling

1 INTRODUCTION

As reported in the Charter of European Planning (ECPT- CEU 2013), a sustainable development requires the maintainance, enhancement and creation of natural resources that are within towns and cities or that provide services for them including the protection of cities from pollution and degradation, high levels of efficiency in energy production and the wise use of resources (e.g. water, air, soil).

Indeed, every land use change can induce either negative consequences or positive repercussions. Man, more than other living species, plays a fundamental role in the global health of the environment as his ability to strongly modify the landscape structure, and consequently its functionality, to reach his objectives. Examples of this capacity are the huge land cover and land use changes realized, above all in these last centuries (Foley et al., 2005; Pelorosso, Leone, & Boccia, 2009) thanks to the technology advances and the use of stoked carbon fossil sources of energy, to acquire even more goods and services from ecosystems and landscapes, generally named Ecosystem Services (ES) (Hermann, Schleifer, & Wrbka, 2011; Termorshuizen & Opdam, 2009). Among these ESs we can find provisioning services such as food, wood and water, as well as energy used by citizen and urban systems, or cultural services such as social, recreational, and touristic benefits. However, the exploitation of natural resources affects the delivery of other ESs as regulating services, such as flood and CO2 control, or supporting services, such as oxygen production, that maintain the conditions for life on Earth (MEA, 2003). In particular, urbanized areas seal soils determining several environmental consequences, e.g.: increasing of water runoff and relative pollutants transport, deterioration of ecosystems functionality, rising of green house gases, fragmentation of habitats and biodiversity reduction. These impacts and consequences can be assessed in the ES framework since it can provide "a new way to approach environmental management and to connect nature and society in research and appraisals" (Karjalainen, Marttunen, Sarkki, & Rytkönen, 2013). Indeed, policies and plans are gradually directed to supply and reinforce desired ecosystem/landscape services (Gulickx, Verburg, Stoorvogel, Kok, & Veldkamp, 2013).

Ecological landscape connectivity is an important issue often erroneously considered only in extra urban or/and protected areas planning context (Pelorosso, Gobattoni, Lauro, Monaco, & Leone, 2012). Landscape connectivity can be defined as the ability of landscape to facilitate or impede movement among habitat patches, support fluxes of energy, organisms and materials (e.g seeds, biomass, pollen, nutrients, sediments) and long-term persistence of biodiversity (Foltête, Clauzel, & Vuidel, 2012; Ng, Xie, & Yu, 2013; Saura & Pascual-Hortal, 2007). Landscape connectivity is therefore one of the major issues related to animal dispersal, population persistence and ecological functions maintenance. In particular, biodiversity represents a fundamental ecosystem property: estimations reports that a 1% change in biodiversity results in a 0.5% change in the value of all ecosystem services (Bastian, 2013).

In this view, landscape connectivity covers an important role in the definition of ecosystem services value of a single patch of the landscape mosaic; indeed, habitat patches, with the same size and characteristics at different locations, may provide different ecosystem services due to their different connectivity within the landscape. Moreover, a well connected landscape increases the resilience of the social ecological systems allowing them to overcome sudden changes (e.g climate changes, wildfires) by persistence, adaptation and transformation processes (Zurlini et al., 2014). Indeed, several methods, indices, approaches and models have been developed regarding landscape connectivity and fragmentation issues (e.g. Luque, Saura, & Fortin, 2012; Saura & Pascual-Hortal, 2007). Moreover, recent papers have focused on the importance of the integration of landscape connectivity measures into the Ecosystem Services (ES) assessment (Ng et al., 2013), Urban Planning (Ahern, 2012; Tannier, Foltête, & Girardet, 2012), and into Environmental Impact

R. Pelorosso, F. Gobattoni, F. Geri, R. Monaco, A. Leone. – Bio-energy connectivity and ecosystems services. An assessment by PANDORA 3.0 model for land use decision making

Assessment (EIA) and Strategic Environmental Assessment (SEA) (Girardet, Foltête, & Clauzel, 2013; Mancebo Quintana, Martín Ramos, Casermeiro Martínez, & Otero Pastor, 2010; Scolozzi & Geneletti, 2012a). Connectivity assessment in the context of land use decision making processes and landscape and urban planning is still challenging (Scolozzi & Geneletti, 2012b). Lack of data and mismatching scale of analysis can represent insurmountable constraints for the correct evaluation and integration of ecological connectivity into plans and assessment procedures. Moreover, complex models can be hard to manage when scenario comparison is requested or the localization and extension of the area change. Thus, several examples of structural connectivity assessment (not species specific approach) and simplified models were presented to adequately face these issues in the planning and assessment practice at different spatial scales (Mancebo Quintana et al., 2010; Marulli & Mallarach, 2005; Ng et al., 2013). An assessment of structural landscape connectivity in terms of energy, based on landscape graphs approach, was presented in an innovative model named PANDORA (Gobattoni, Lauro, Monaco, & Pelorosso, 2012; Gobattoni, Pelorosso, Lauro, Leone, & Monaco, 2011). The energy considered by the model is linked with vegetation metabolism by BTC index, thus it assesses the biological energetic state of the landscape and bio-energy exchanges among landscape components (Bio-Energy Landscape Connectivity, BELC). The model was developed to meet the needs of planners and practitioners involved in the environmental assessment procedure and it was proposed as operative Decision Support System to assess the impact of different scenarios of land use change. The last version of the model (Gobattoni, Groppi, Monaco, & Pelorosso, 2014) analyzes the contribute of each patch of land mosaic to global BELC and, consequently to functionality and resilience of the whole system.

In the current methods to assess landscape connectivity in terms of ecosystem services, there are two main limitations: 1) connectivity is calculated within the same land use category of habitat patches; 2) the evaluation of ecosystem services mainly relies on patch size without considering other variables, e.g. water, soil and climatic characteristics, that could strongly affect the final ecosystem services value (Ng et al., 2013). A model fully integrating ES into landscape connectivity assessment has not been presented yet.

In this work, to face those limits, we propose the last version of model PANDORA with the new module, presented here for the first time, for the evaluation of the ecological value (Ecosystem Services) of single patches of landscape mosaic in terms of Habitat (e.g. land cover) and BELC. The multi-scale workability and the spatial approach of the model aim at furnishing a further tool for the spread of ecosystem services and landscape ecology concepts into procedures of assessment (e.g. EIA, SEA) and land planning at different administrative scales.

2 METHODOLOGY

The proposed method for bio-energy landscape connectivity (BELC) assessment is here synthetically reported. A deep description is out of the aims of this paper and it can be found in other publications. The ES evaluation is then reported in a specific paragraph.

Numerical integration of the Ordinal Differential Equations (ODEs) system, on which the model PANDORA is founded, can be rather heavy because of the high number of equations, specially to produce a friendly user system. Thus, an approximated solution is proposed in order to substitute the above set of ODEs with an algebraic hierarchy which may be implemented easily (Gobattoni et al., 2014). The Bio-Energy (B) is the state variable related to the metabolism of vegetation characterizing each land cover patch. The parameters regulating the B evolution (e.i. evolution to mature forest with highest biodiversity level) are derived by vegetational, morphological, climatic and soil characteristics of the landscape units. Most important human-made barriers to energy fluxes (e.g. large and high traffic roads) define the borders of each landscape unit

(LU). Other human-made barriers (e.g. minor roads, edified areas, urban sprawl, no photosynthetic surfaces) in each LU are considered as limiting factors to energy fluxes and consequently to the evolution of biotopes energy level inside them. Fluxes of bio-energy among LUs are continuously recalculated with the evolution of the patches and they define the connectivity index of each LU. High connectivity level defined by such an index is considered by the model as a positive factor for the increase of the Bio-Energy of the patch. The solution of the algebraic hierarchy until asymptotic values gives the final values of B^{as} for each patch and the Generalized Biological Energy of the overall system (M^{as}tot).

The ES assessment has been realized by considering both the land cover typology (e.i. habitat) and the importance of the patch for the global landscape connectivity expressed by the asymptotic value of M^{as}tot. The importance of each patch in terms of its contribution to the maintenance of M^{as}tot level has been calculated by comparing the M^{as}tot difference before and after changing the patch into an urban area (e.i. impervious and no photosynthetic surface). Such an index is defined as dMtot. Ecosystem Services Value for Biodiversity protection (ESV_B) for a unit area of different land cover categories (€/ha/year) has been updated and modified to Italian case from Ng, Xie, & Yu (2013). The model has been developed in open source environment and applied in a portion of the municipality of Viterbo (Central Italy) considering the actual land use and urban development.

2.1 ECOSYSTEM SERVICES ASSESSMENT

ES value (ESV) can be evaluated for each patch taking in consideration only the type of habitat (e.g. land Cover) and the area of a patch by the following conventional formula (Ng *et al.* 2013):

$$ESV_{kj} = VC_k \cdot A_{k_j} \tag{1}$$

where ESV_{kj} is the estimated Ecosystem Services Value of patch *j* of land cover category *k*, VC_k is the value coefficient for landcover category *k*, A_{k,j} is the area of the patch *j* and land cover category *k*. VC_k is the economic value of each macro land cover typology and it was used to evaluate different ESs in China (Ng et al., 2013; Tianhong, Wenkai, and Zhenghan, 2010; Xie, Lu, C. X., Leng, Zhang, and Li, 2003). Based on a seminal work of Costanza et al. (1997) and Xie et al. (2003), Tianhong et al. (2010) report the procedure to obtain the contribute of each land cover class in the delivery of a range of ES starting from equivalent weight factors of ESs for several terrestrial ecosystem (see table 1).

ECOSYSTEM SERVICES	FOREST	GRASSLAND	CROPLAND	WETLAND	WATER BODY	BARREN LAND
Gas regulation	3.5	0.80	0.50	1.80	0	0
Climate regulation	2.70	0.90	0.89	17.10	0.46	0
Water supply	3.20	0.80	0.60	15.50	20.40	0.03
Soil formation and retention	3.90	1.95	1.46	1.71	0.01	0.02
Waste treatment	1.31	1.31	1.64	18.18	18.20	0.01
Biodiversity protection	3.26	1.09	0.71	2.50	2.49	0.34
Food	0.10	0.30	1.0	0.30	0.10	0.01
Raw material	2.60	0.05	0.10	0.07	0.01	0
Recreation and culture	1.28	0.04	0.01	5.55	4.34	0.01
Total	21.85	7.24	6.91	62.71	46.01	0.42

808 TeMA Journal of Land Use Mobility and Environment INPUT 2014

Eighth International Conference INPUT - Naples, 4-6 June 2014 Smart City - Planning for Energy, Transportation and Sustainability of the Urban System

Tab. 1 Equivalent weight factor of ESs per hectare of terrestrial ecosystems in China (Tianhong et al. 2010)

The economic value of average natural food production of cropland per hectare per year (ANFPC) was assigned to the weight factor one (bold character in table 1). Thus, to obtain the delivered ESs for unit area of different terrestrial ecosystem it is necessary to multiply the economic value of ANFPC for each weight of the table 1. ES value of one unit area of each land use\land cover category can be then assigned based on the nearest equivalent ecosystems. ANFPC can be calculated considering a mean price for hectare of most common crops (e.g. wheat) and that, generally, the natural food production is 1/7 of the actual food production. The weights were estimated for China context so for other Regions possible variations are expected. In this work, for the applicability of the method and the aims of the paper, the proposed weights were unchanged, while, the economic value of ANFPC was recalculated for Italian study case and update to nowadays. Different types of land cover in the study area were finally estimated.

The method proposed by Ng et al. (2013), to calculate biodiversity Ecosystem Services Value (ESV_B) considering ecological connectivity measures, introduces a connectivity index as followings:

$$ESV_B_{kj} = VC_k \cdot \left(\frac{dPC_{k_j}}{dPC_{k_max}}\right) \cdot A_{k_max}$$
(2)

$$dPC_{k_{j}} = \left(\frac{PC_{k_{j}} - PC_{k_{j}}}{PC_{k_{j}}}\right) \cdot 100$$
(3)

where ESV_B_{kj} is the estimated biodiversity Ecosystem Services Value of patch *j* of land cover category *k*, A_{k_max} refers to the largest area of patches among the land cover category *k*. PC (possibility of connectivity) is a well known area-based functional connectivity index (Saura and Pascual-Hortal 2007). dPC_{k_j} indicates the importance of each patch in terms of its contribution to the maintenance of overall connectivity by comparing the overall connectivity difference before (i.e. PC_{k_j}) and after (i.e. PC'_{k_j}) moving the patch (Saura and Pascual-Hortal, 2007). dPC_{k_j} is the dPC value of patch *j* of land cover category *k*, and dPC_{k_max} indicates the maximum value of dPC among land cover category *k*. The method standardizes values of connectivity within the same land cover category and takes in consideration the largest patch as reference. The proposed new method to calculate ESV_B_{kj} is a modification of the formula (2) and (3) and it aims to

overcome above cited constrictions by introducing a connectivity index linked with bio-energy level of the landscape and the actual patch area:

$$ESV_B_{kj} = VC_k \cdot \left(1 + \frac{dMtot_{kj}}{dMtot_{j_max}}\right) \cdot A_j$$
(4)

$$dMtot_{kj} = \left(\frac{M^{as}tot_{j} - M^{as}tot_{j}}{M^{as}tot_{j}}\right) \cdot 100$$
(5)

where $\text{ESV}_{B_{kj}}$ is the estimated biodiversity ecosystem services value of patch *j* of land cover category *k* with bio-energy connectivity evaluation, VC_k is the value coefficient for land cover category *k* updated for Italian study case, A_j refers to the area of the patch *j* without considering land cover type membership. M^{as}tot_j is

the Generalized Biological Energy of the overall system; it derives by Pandora 3.0 model e.i. by the solution of the algebraic hierarchy until asymptotic values of all the patches: it is the index of overall BELC and it considers the Bioenergy evolution of all the landscape patches under the actual barriers to energy fluxes, climatic, morphological and soil conditions. dMtot_{kj} indicates the importance of each patch *j* and land cover category *k* in terms of its contribution to the maintenance of overall BELC by comparing the overall connectivity difference before (i.e. M^{as} tot*j*) and after (i.e. M^{as} tot*'j*) changing the patch into an urban area. dMtot_{*L*max} indicates the maximum value of dMtot among all the patches *j* of the landscape without considering land cover type difference.

In this work a comparison between ESV_B evaluation without and with BELC assessment is proposed on the basis of formulas (1) and (4) respectively, moreover aggregated ESV_B assessments are pointed out at: a) Land cover type scale

$$ESV_B_k = \sum_{j=1}^{z_k} ESV_B_{kj}$$
(6)

Where z_k is the number of patches with land cover category *k*.

b) Landscape Unit scale

$$ESV_B_i = \sum_{r=1}^{m_i} ESV_B_{ir}$$
⁽⁷⁾

Where m_i is the number of patches inside the landscape unit *i*. c) Landscape scale

$$ESV_B_{tot} = \sum_{i=1}^{n} ESV_B_{i}$$
(8)

Where *n* is the number of landscape units.

3 RESULTS

The commodity exchange of Bologna for 2013 reports a mean price of 200 \in /ton for soft wheat and 270 \in /ton for durum wheat. Thus, considering a value of 250 \in /ton and a mean production of 6 ton/ha per year, the economic value of ANFPC for Italy was estimated as 214 \in /ha per year. Table 2 reports the final VC_k for the main land cover typology of the study area for Biodiversity protection.

	FOREST	GRASSLAND	ORCHARD	CROPLAND	WETLAND	WATER BODY	BARREN LAND	BUILD UP
Biodiversity protection	697,64	233,26	189,92	151,94	535,00	532,86	72,76	0,00

Tab. 2 Value Coefficient (VC_k) for land cover category k of unit area for Biodiversity protection (€/ha*year). Note that orchards are calculated as 25% more of cropland

The index dMtot_j representation (Fig. 1) allows to highlight the importance of each patch in terms of its contribution to the maintenance of the overall bio-energy level and consequently to BELC. The results show also the capabilities of the model to spatially discriminate the ES value of each patch on land mosaic (Fig. 2),

the ES at level of land cover typology (Fig. 3) and at level of LU (Fig. 4). The ES value at landscape scale without and with connectivity measure is therefore $7.134.357,90 \notin$ /year and $10.192.959,80 \notin$ /year, respectively, with an increase of 42.8% considering the BELC.

Fig. 1 dMtotkj index representation: the value ranges between 0 and 100 and defines the percentage decrease of overall generalized bioenergy Mastot consequent to the conversion of the patch into an urban area (e.i. impervious and no photosynthetic surface)

811 TeMA Journal of Land Use Mobility and Environment INPUT 2014

Fig. 2 ESV_B_{ki} for each land cover patch of study area. a) Without considering BELC; b) with BELC

Fig. 3 ES Value for each land cover typology without and with BELC, respectively

Fig. 4 ES Value for each Landscape Unit of the study area without and with BELC, respectively

4 DISCUSSION

The concept of landscape embraces all the components of human environment: cultural identity, natural resources, economy and society. Landscape is, therefore, an expression of the diversity of shared mutli-cultural and natural heritage (ECTP-CEU, 2013).

Spatial planning science and praxis has to provide cohesion among these different aspects and, consequently, it has to be applied to all the various contexts: residential, commercial and industrial areas; infrastructures; tourist and leisure locations; urban green areas and parks; rural areas. The challenge for effective planning consists in integrating these needs, starting from the protection and management of biodiversity and Indscapes. To pursue this aim, it's necessary to assess the interactions between human settlements, infrastructures and natural areas, i.e. examining landscape connectivity, which is a theme stressed since long time ago by landscape ecology (e.g. Forman, 1995).

Starting from Landscape Ecology assumptions, it's necessary to extrapolate the role for spatial planning. Namely, landscape connectivity was considered in the evaluation of ES only recently (Ng et al., 2013). The current methods to assess landscape connectivity in terms of ES, show two main general limitations: 1) connectivity is calculated within the same land use category of habitat patches; 2) the evaluation of ES mainly relies on patch size without considering other variables, e.g. water, soil and climatic characteristics, that could strongly affect the final ES value. Moreover, a model fully integrating ES into landscape connectivity assessment has not been presented yet.

In this work, we propose an innovative approach to face these limitations. The new index dMtot points out the importance of each patch in terms of its contribution to the maintenance of BELC (Fig. 1). It considers soil, climatic and morphological aspects of the LUs and, moreover, is related to the connectivity of all the patches with respect to a bio-energy measure making the dMtot index no-dependent from habitat typology, indeed all the patches contribute to BELC.

The calculation of ES values of the patch considers a measure of a structural landscape connectivity founded on thermodynamic laws that lie behind all the environmental processes and dynamics of landscape, as well as animal movements and vegetation/ecosystem evolution. Consequently, such a connectivity is strictly linked to the functionality and resilience of the landscape.

Indeed, ES values as well as dMtot index can be used to individuate suitable areas for urban development or conservation measures both at level of patch (Fig. 1, Fig. 2) and at level of LUs (Fig. 4). Such a latter zoning, based on recognizable barriers (e.g. roads) on landscape, may facilitate the integration of connectivity information in different territorial plans e.g. supporting the characterization of urbanized and non-urbanized areas into municipality plans, or of rural areas for provincial or regional plans. Finally, the data required by the model are usually available by land manager making the implementation of the procedure feasible also into contexts of scarce resources and low financial availability.

In this way, it's possible to carry out the usual planning praxis giving it an effective, low cost and scientifically sound analysis. Moreover, it's possible to quickly compare scenarios and make maps and graphics generated by PANDORA model accessible to stakeholders thus supporting, in a more transparent way, both planners' choices and people participation. The proposed approach can therefore allow decision makers, but also communities, to have a clear picture of the ecological impacts of planned order and, as a consequence, to contribute to build healthy landscapes.

5 CONCLUSIONS

The final aim of this research consists in developing methods and tools to include the ES thinking in planning practice since it can allow to assign an objective value to natural resources: biodiversity, air, soil, water and energy.

At the present step, in this paper, the new version of model PANDORA 3.0 is presented: through the application to a real case, it has pointed out its capability to assess the landscape in terms of BELC and ES. The model allows to support the decision making process by the assessment of different land use scenarios. The multi-scale workability and the spatial approach of the model aim at furnishing a further tool for the spread of ES and landscape ecology concepts into procedures of assessment (e.g. EIA, SEA) and land planning at different administrative scales.

REFERENCES

Ahern, J. (2012), "Urban landscape sustainability and resilience: the promise and challenges of integrating ecology with urban planning and design", *Landscape Ecology*, 28(6), 1203-1212.

Bastian, O. (2013), "The role of biodiversity in supporting ecosystem services in Natura 2000 sites", *Ecological Indicators*, 24, 12-22.

Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., van den Belt, M. (1997), "The value of the world's ecosystem services and natural capital", *Nature*, 387(6630), 253-260.

ECTP-CEU, European Council of Spatial Planners (2013), The Charter of European Planning, approved by the General assembly of Barcelona the 22th April 2013.

Foley, J. a, Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E. a, Kucharik, C.J., Monfreda, C., Patz, J. a, Prentice, I.C., Ramankutty, N., Snyder, P.K. (2005), "Global consequences of land use", *Science*, 309, 570-574.

Foltête, J.-C., Clauzel, C., Vuidel, G. (2012), "A software tool dedicated to the modelling of landscape networks", *Environmental Modelling and Software*, 38, 316-327.

Forman, R.T.T. (1995), "Some general principles of landscape and regional ecology", Landscape Ecology, 10(3), 133-142.

Girardet, X., Foltête, J.-C., Clauzel, C. (2013), "Designing a graph-based approach to landscape ecological assessment of linear infrastructures", *Environmental Impact Assessment Review*, 42, 10-17.

Gobattoni, F., Groppi, M., Monaco, R., Pelorosso, R. (2014), "New developments and results for mathematical models in environment evaluations", *Acta Applicandae Mathematicae*, accepted.

Gobattoni, F., Lauro, G., Monaco, R., Pelorosso, R. (2012), "Mathematical Models in Landscape Ecology: Stability Analysis and Numerical Tests", *Acta Applicandae Mathematicae*, 125(1), 173-192.

Gobattoni, F., Pelorosso, R., Lauro, G., Leone, A., Monaco, R. (2011), "A procedure for mathematical analysis of landscape evolution and equilibrium scenarios assessment", *Landscape and Urban Planning*, 103(3-4), 289-302.

Gulickx, M.M.C., Verburg, P.H., Stoorvogel, J.J., Kok, K., Veldkamp, A. (2013), "Mapping landscape services: a case study in a multifunctional rural landscape in The Netherlands", *Ecological Indicators*, 24, 273-283.

Hermann, A., Schleifer, S., Wrbka, T. (2011), "The Concept of Ecosystem Services Regarding Landscape Research: A Review", *Living Rev. Landscape Res.*, 5(1), 1-37.

R. Pelorosso, F. Gobattoni, F. Geri, R. Monaco, A. Leone. – Bio-energy connectivity and ecosystems services. An assessment by PANDORA 3.0 model for land use decision making

Karjalainen, T.P., Marttunen, M., Sarkki, S., Rytkönen, A.-M. (2013), 2Integrating ecosystem services into environmental impact assessment: An analytic–deliberative approach", *Environmental Impact Assessment Review*, 40, 54-64.

Luque, S., Saura, S., Fortin, M.-J. (2012), "Landscape connectivity analysis for conservation: insights from combining new methods with ecological and genetic data", *Landscape Ecology*, 27(2), 153-157.

Mancebo Quintana, S., Martín Ramos, B., Casermeiro Martínez, M. a, Otero Pastor, I. (2010), "A model for assessing habitat fragmentation caused by new infrastructures in extensive territories - evaluation of the impact of the Spanish strategic infrastructure and transport plan", *Journal of environmental management*, 91(5), 1087–96.

Marulli, J., Mallarach, J.M. (2005), "A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area", *Landscape and Urban Planning*, 71(2-4), 243-262.

MEA (2003), Ecosystems and Human Well-being: A Framework for Assessment, Island Press.

Ng, C.N., Xie, Y.J., Yu, X.J. (2013), "Integrating landscape connectivity into the evaluation of ecosystem services for biodiversity conservation and its implications for landscape planning", *Applied Geography*, 42, 1-12.

Pelorosso, R., Gobattoni, F., Lauro, G., Monaco, R., Leone, A. (2012), "Pandora: modello per l'analisi di scenario a supporto delle pianificazioni", *Urbanistica*, 149, 129-138.

Pelorosso, R., Leone, A., Boccia, L. (2009), "Land cover and land use change in the Italian central Apennines: A comparison of assessment methods", *Applied Geography*, 29(1), 35-48.

Saura, S., Pascual-Hortal, L. (2007), "A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study", *Landscape and Urban Planning*, 83(2-3), 91-103.

Scolozzi, R., Geneletti, D. (2012a), "A multi-scale qualitative approach to assess the impact of urbanization on natural habitats and their connectivity", *Environmental Impact Assessment Review*, 36, 9-22.

Scolozzi, R., Geneletti, D. (2012b), "Assessing habitat connectivity for land-use planning: a method integrating landscape graphs and Delphi survey", *Journal of Environmental Planning and Management*, 55(6), 813-830.

Tannier, C., Foltête, J.-C., Girardet, X. (2012), "Assessing the capacity of different urban forms to preserve the connectivity of ecological habitats", *Landscape and Urban Planning*, 105(1-2), 128-139.

Termorshuizen, J.W., Opdam, P. (2009), "Landscape services as a bridge between landscape ecology and sustainable development", *Landscape Ecology*, 24(8), 1037-1052.

Tianhong, L., Wenkai, L., Zhenghan, Q. (2010), "Variations in ecosystem service value in response to land use changes in Shenzhen", *Ecological Economics*, 69(7), 1427-1435.

Xie, G.D., Lu, C.X., Leng, Y.F., Zhang, D., Li, S.D. (2003), "Ecological assets valuation of the Tibetan Plateau", *Journal of Natural Resources*, 18(2), 189-196 (in Chinese).

Zurlini, G., Petrosillo, I., Aretano, R., Castorini, I., D'Arpa, S., De Marco, A., Pasimeni, M.R., Semeraro, T., Zaccarelli, N. (2014), "Key fundamental aspects for mapping and assessing ecosystem services: predictability of ecosystem service providers at scales from local to global", *Annali di Botanica*, 4, 61-71.

AUTHORS' PROFILE

Raffaele Pelorosso

He is a researcher in Landscape and Urban Planning at the University of Tuscia. He holds a PhD in "Science and Technology for the Forest and Environmental Management" at University of Tuscia. Lecturer in Ecology, Cartography and Planning. His research activity is mainly focused on landscape functionality, urban green, land use planning, analysis of landscape dynamics, land cover and land use change. Associate Editor of International Journal of Sustainable Land Use and Urban Planning. He is authors of more than 50 scientific papers and peer reviewer for many international journals as: Land Use Policy, Landscape and Urban Planning, Environmental Management, Journal of Environmental Engineering and Management, Advanced in Space Research, Science of the Total Environment.

R. Pelorosso, F. Gobattoni, F. Geri, R. Monaco, A. Leone. – Bio-energy connectivity and ecosystems services. An assessment by PANDORA 3.0 model for land use decision making

Federica Gobattoni

She has a Master Degree in Environmental Engineering at University of Perugia, PhD in "Science and Technology for the Forest and Environmental Management", and she's a post-doctoral researcher at University of Tuscia. Her research activity is mainly concerned with landscape dynamics, environmental modeling in GIS environment, decision support systems for planning and management of natural resources, development of mathematical models for landscape evolution and equilibrium scenarios assessment. She was Convener of the "Landscape functionality and conservation management" session at European Geosciences Union General Assembly of 2010, 2011 and 2012. She is peer reviewer for many international journals as: Journal of Water and Climate, Ecological Complexity, Water, Air and Soil Pollution, Chemical Engineering and Technology, Earth Science Informatics.

Francesco Geri

He is graduated in Natural Science with a Ph.D in Environmental Science and Technology. He was lecturer in Landscape Ecology, Thematic Cartography and in Geographic Information Systems. Authors of several scientific papers in landscape ecology, remote sensing and geographical information science. He's also reviewer of international scientific journals such as Landscape and Urban Planning, Ecological Indicators, International Journal of Geo-Information, International Journal of Biodiversity and Conservation, Remote Sensing, International Journal of Applied Earth Observation and Geoinformation. He's a GIS analyst with experience in statistical data processing and an expert GIS and web programmer through the use of different programming language such as Python, PHP, Javascript etc.

Roberto Monaco

He is full professor of Mathematics at the Department of Regional and Urban Studies and Planning at Politecnico of Torino. His research activity is focused on mathematical models in applied sciences, in particular in fluid dynamics and regional sciences. He is author of more of 130 papers, of several books and Editor of Proceedings of many international conferences. He has promoted and is the director of an international summer school in Models and Methods of Kinetic Theory. He is peer reviewer of several mathematical journals, as those of IOP (Inst. of Phys.), Phys. of Fluids and Acta Appl. Mat.

Antonio Leone

Full professor of Land Engineering at University of Tuscia, Industrial Engineering course. Member of the Teaching College PhD "Land and Urban Planning" at Politecnico di Bari and "Environment and landscape design and planning" at Sapienza University of Rome. Participant and responsible in several projects financed by the European Union within 5th Framework Programme, Interreg IIIB Research Program, COST-actions, LIFE programme and other national and regional research programs (e.g. Nature 2000 sites). Member of Scientific International Committee for Metropolitan Strategic Master Plan "Terra di Bari". Member of Scientific Committee for University Consortium for Socio-economic and Environment Research (CURSA). Author of more than 100 scientific papers in the area of landscape and environmental planning.