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Abstract 
The recent development of location detection systems allows to monitor, understand and predict the activity 
patterns of the city users. In this framework, the research focuses on the analysis of a sample of aggregated 
traffic data, based on the number of mobile devices detected through a network of 55 Wi-Fi Access Points 
in Milan. Data was collected over 7 months (January to July 2020), allowing for a study on the impact of 
the Covid-19 pandemic on activity patterns. Data analysis was based on merging: (i) time series analysis of 
trends, peak hours and mobility profiles; (ii) GIS-based spatial analysis of land data and Public Transport 
data. Results showed the effectiveness of Wi-Fi location data to monitor and characterize long-term trends 
about activity patterns in large scale urban scenarios. Results also showed a significant correlation between 
Wi-Fi data and the density distribution of residential buildings, service and transportation facilities, 
entertainment, financial amenities, department stores and bike-sharing docking stations. In this context, a 
Suitability Analysis Index is proposed, aiming at identifying the areas of Milan which could be exploited for 
more extensive data collection campaigns by means of the installation of additional Wi-Fi sensors. Future 
work is based on the development of Wi-Fi sensing applications for monitoring mobility data in real time. 
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1. Introduction 
Urban Informatics (Foth et al., 2011) provides innovative assessment tools and metrics to support an effective 
planning of mobility services, within an evidenced-based and multi-disciplinary approach. Thanks to the recent 
development of advanced ICT solutions and the increasing availability of digitally widespread data sources, 
Big Data is becoming a valuable support to unveil hidden mobility patterns in the cities (Batty, 2013; Crist et 
al., 2015): “[...] as representing measures of the ‘pulse’ of a city, as a measure of locational focus that moves 
in space and time but correlates in diverse ways with the substrata of the city which change much more slowly, 
such as population and employment densities and related infrastructures” (Batty, 2010, p.576). 
In particular, the development of location detection systems allows to monitor, understand and predict the 
travel behavior of city users, considering both micro (e.g., road intersections) and macro scale scenarios (e.g., 
large transport infrastructures) (Xhafa et al., 2017). These include the following techniques for data collection: 
− images stream analysis and acquisition systems (Buch et al., 2011): AI and computer vision techniques 

for processing a sequence of photographs or a video clip collected through CCTV cameras or drones; 
− radio frequency systems based on Wi-Fi or Bluetooth technology (Sapiezynski et al., 2015): antenna type 

sensors for scanning wireless devices through the media access control (MAC) address (i.e., unique 
identifier of each network device); 

− cell network data acquisition systems (Becker et al., 2013): data derived from subscriber identity modules 
(SIM cards) and cell network technology; 

− software development kit, Beacon and bid stream systems (Lin & Hsu, 2014): data derived from Global 
Positioning System (GPS) signal of navigation devices and Apps for smartphones; 

− Occupancy Detection Systems (Odat et al., 2017): light pulse type remote detection techniques, including 
Laser Imaging Detection and Ranging (LIDAR) and passive infra-red (PIR) sensors. 

Nowadays, monitoring traffic data has become even more crucial for the activity of transport planners and 
decision makers, considering the need to investigate the unprecedented effects of disruption of the Covid-19 
pandemic on urban mobility and to assess the effectiveness of immediate and longer-term actions that cities 
have developed to respond to the crisis (Coppola & De Fabiis, 2020; European Platform on Sustainable Urban 
Mobility Plans, 2020). In just a few months the nation-wide lockdown and post-lockdown phases have 
drastically changed citizens behaviors and mobility patterns related to the cities, neighborhoods and streets in 
which they live (Deponte et al., 2020; Zecca et al., 2020). Taking advantage of a preliminary work already 
presented by the authors1, the current paper is based on the analysis of a large sample of structured 
proprietary data gathered during a 7-month period (January to July 2020) through a network of 55 Wi-Fi 
sensors distributed in several department stores, shops and public services in Milan (Italy). The objective of 
the analysis is twofold. First, the research aimed at testing the effectiveness and reliability of Wi-Fi technology 
to collect aggregated data about activity patterns in large scale urban scenarios. In this framework, the number 
of mobile devices detected per day per hour during the entire period of reference was analyzed to estimate 
the effects of the Covid-19 pandemic on activity patterns. In particular, a time series analysis on trends, peak 
hours and mobility profiles was executed to compare results between the Pre-Covid-19 period (from January 
1st to February 22nd, 2020) and the lockdown Phase 0, 1, 2 and 3 (from February 23rd to July 31st, 2020). 
Second, the research aimed at correlating the number of detected mobile devices (i.e., time-variant data) with 
the density distribution of relevant land and Public Transport data (i.e., time-invariant data), such as building 
typologies, green areas, amenities and Public Transport. Given the unprecedented effects of the adopted 
containment measures on urban dynamics (e.g., restricted mobility, partial opening or closures of public 
services, etc.), the proposed GIS-based analysis aimed at understanding which areas of the city were more 

 
1 See: https://research.systematica.net/journal/monitoring-big-traffic-data-through-wi-fi-sensors-the-evolution-of-the-

lockdown-phases-in-milan/ 
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resilient during the evolution of the lockdown phases, considering the variation of Wi-Fi data during the entire 
period of reference. Moreover, the results of the analysis were used to define a Suitability Analysis Index 
(Santos & Moura, 2019), aiming at identifying the areas of Milan which could be exploited for more extensive 
data collection campaigns by means of the installation of additional Wi-Fi sensors. The paper proposes a review 
of relevant applications and scientific contributions focused on the use of the Wi-Fi technology for collecting 
data about activity patterns in urban areas (namely traffic data), in order to provide a preliminary assessment 
of its advantages and limitations. Then, it presents the enabling data and methodology which sets the current 
work, and the results of time series analysis of Wi-Fi data and GIS-based analysis of location-based data. The 
paper concludes with final remarks about the achieved results and future work. 

1.1 Related Works 
Wi-Fi technology is recognized as one of the most effective sensors for monitoring activity patterns, considering 
both outdoor and indoor scenarios. This is due to installation and maintenance costs, precision rate, energy 
consumption, robustness to weather and light conditions (Bernas et al., 2018), and compliance to the General 
Data Protection Regulation (GDPR) (National Centre for IoT and Privacy, 2020). Additionally, the ubiquity of 
Wi-Fi sensors in cities enable the collection of data with high spatial and temporal granularity (Kontokosta & 
Johnson, 2017). In recent years, numerous studies addressed potentialities and shortcomings of Wi-Fi 
technology to enhance the existing traffic monitoring infrastructure, including the following: 
− Transport for London (2019) conducted an extensive pilot research on Wi-Fi data collection and analysis 

to improve services. The study proved that Wi-Fi technology could enable more efficient planning and 
management of the transport infrastructure;  

− Sapiezynski et al. (2015) investigated the possibility to accurately track students’ movements on campus 
with a reduced number of existing Wi-Fi APs, due to low variability of activity patterns, and discussed the 
implications on user’s privacy; 

− Bellini et al. (2017) proposed a methodology to select existing Wi-Fi APs at optimal locations in order to 
produce accurate OD matrices, daily users’ mobility behaviors analyses and forecasting;  

− Kontokosta and Johnson (2017) estimate types of residents based on activity patterns of users connecting 
to the Wi-Fi network, with the aim to create a real-time census of the city;  

− Soundararaj et al. (2020) used Wi-Fi probe requests to identify footfall patterns in retails, with a focus 
on methods to validate data;  

− Kostakos et al. (2013) proposed an integration of magnetic loops traffic sensors with the existing Wi-Fi 
infrastructure to monitor cities in near real-time.  

Among the limitations of Wi-Fi technology, it has to be noted that it does not allow to disaggregate data among 
different means of transportation (e.g., private motorized vehicles, cyclists, pedestrians, etc.). The capability 
of this technology to detect mobile devices depends on its connection features, its battery level and actual 
usage. The accuracy of Wi-Fi data can be also influenced by background noise due to fixed devices and 
systematic errors due to the device’s orientation. Furthermore, the possibility to estimate traffic data is limited 
by the possibility to detect multiple mobile devices per users, leading to an oversampling error (Soundararaj 
et al., 2020). 

2. Enabling Data and Methodology 
Thanks to the collaboration with the Wi-Fi service provider FreeLuna2, a large sample of proprietary data was 
collected through a network of 55 Wi-Fi sensors (see Fig.1 and Tab.1) from the beginning of January 2020 to 

 
2  See: https://www.futur3.it/en/ 
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the end of July 2020. First, the proposed time series analysis was focused on the number of mobile devices 
detected per day per hour through the Wi-Fi sensors, in order to highlight trends, peak hours and mobility 
profiles during the entire period of reference. Then, results were compared against an extensive GIS-based 
analysis focused on relevant land and Public Transport data (see Tab.1), which were retrieved, sorted and 
filtered from geoportals and open data repositories. This information was analyzed to design a multi-layer map 
of Milan and to estimate the spatial distribution of each dataset considering the localization of the Wi-Fi Access 
Point (APs). 

 
Fig.1 The location of the 55 Wi-Fi APs, with related radius of action (r = 80 m) and catchment areas (r = 280 m) 

From a general point of view, the proposed GIS analysis was based on various attributes and characteristics 
of the urban area surrounding each Wi-Fi sensor. To do so, raw data related to the urban scale were extracted 
about surrounding areas of each Wi-Fi AP (see Fig.2 and Fig.3). A catchment area with a radius of 280 m 
(circular buffer areas of 0.246 km2) was designed, considering the radius of action of installed Wi-Fi sensors 
(80 m) and the travel distance allowed from place of residence within the restricted territories during the 
lockdown Phase 1 (200 m), according to the national regulation enforced by the Italian Government3.  

 
Fig.2 The catchment area surrounding each Wi-Fi AP is based on the radius of action of the Wi-Fi signal (r = 80 m) and on 
the travel distance allowed within the restricted territories during the lockdown Phase 1 (r = 200 m) 

Data analysis was based on counting the number of mobile devices (e.g., smartphones, tablets, notebooks, 
etc.) detected per hour per day by means of the 55 Wi-Fi APs. A preliminary data validation allowed us to 
discard the Wi-Fi data collected from a few malfunctioning APs, characterized by an irregular signal. The clean 
data set consists of a total of 111,100,558 mobile devices, representing in an aggregated manner the traffic 

 
3  See: http://www.governo.it/it/coronavirus-misure-del-governo 
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data (TD) observed in Milan during the entire period of reference and constituted by various means of 
transportation. Then, the time series of Wi-Fi data was post-processed and analyzed focusing on trends, peak 
hours and mobility profiles. 

Indicator Data typology Parameter Data Source Year 

Traffic 

Data 

Wi-Fi APs position - FreeLuna 2020 

Timestamp (YYYYMMDDhh) - FreeLuna 2020 

Counted mobile devices TD FreeLuna 2020 

Land 

Data 

Residential Buildings ReB Geoportal Lombardy Region 2012 

Administrative Buildings NReB_Ad Geoportal Lombardy Region 2012 

Commercial Buildings NReB_Co Geoportal Lombardy Region 2012 

Industrial Buildings NReB_In Geoportal Lombardy Region 2012 

Service and Transportation NReB_ST Geoportal Lombardy Region 2012 

Green Areas GA Geoportal Lombardy Region 2012 

Education Amenities A_Ed Geoportal City of Milan and OpenStreetMap 2020 

Entertainment Amenities A_En Geoportal City of Milan and OpenStreetMap 2020 

Financial Amenities A_Fi Geoportal City of Milan and OpenStreetMap 2020 

Shops A_Sh Geoportal City of Milan and OpenStreetMap 2020 

Department Stores A_DS Geoportal City of Milan and OpenStreetMap 2020 

Sustenance Amenities A_Su Geoportal City of Milan and OpenStreetMap 2020 

Public 
Transport 

Data 

Bike-sharing Stations PT_Bi Geoportal City of Milan 2020 

Subway Lines PT_Su Geoportal City of Milan 2020 

Tram Lines PT_Tr Geoportal City of Milan 2020 

Bus Lines PT_Bu Geoportal City of Milan 2020 

Tab.1 The list of proprietary and open datasets that were analyzed and merged for understanding the impact of the lockdown 
phases on activity patterns in Milan 

The proposed GIS data analysis was based on extracting a series of location-based data from the areas 
surrounding each Wi-Fi AP, focusing on: 
− Land Data (Geoportal of Lombardy Region4; Geoportal of the City of Milan5; OpenStreetMap6):  

o Residential buildings (ReB), administrative (NReB_Ad), commercial (NReB_Co), industrial buildings 
(NReB_Co) and service and transportation facilities (NReB_ST); 

o Green areas (e.g., parks, public gardens, flowerbed) (GA); 
o Amenities: education (A_Ed) (e.g., school, University, library, etc.), entertainment, arts and culture 

(A_En) (e.g., museum, cinema, etc.), financial (A_Fi) (e.g., ATM, bank), healthcare (A_He) (e.g., 
hospital, pharmacy, etc.), shops (A_Sh), department stores (A_DS) and sustenance (A_Su) (e.g., 
bar, restaurant, etc.); 

− Public Transport Data (Geoportal of the City of Milan): bike sharing docking stations (PT_Bi), subway 
lines (PT_Su), tram lines (PT_Tr) and bus lines (PT_Bu). 

The dataset, composed by punctual, linear and areal vectors, was analyzed through density-based calculation 
on catchment areas. For the purpose of comparing the various indicators among them, each one has been 
normalized on a 0-1 scale, creating Z-scores that follow the normal distribution of the values. The following 
step has involved the calculation of a series of correlations (using Pearson’s Correlation Coefficient) between 

 
4  See: http://www.geoportale.regione.lombardia.it/en/home 
5  See: https://geoportale.comune.milano.it/sit/ 
6  See: https://www.openstreetmap.org/ 



Gorrini A. et al. - Covid-19 pandemic and activity patterns in Milan. Wi-Fi sensors and location-based data 

 

 
216 - TeMA Journal of Land Use Mobility and Environment 2 (2021) 

the normalized values of density for each indicator. The problem of accounting for autocorrelation of the 
variables included in this study was then considered by implementing a modified t-test of spatial association 
derived from the work of Clifford et al. (1989). This is mainly based on the corrections of the sample correlation 
coefficient between two spatially correlated variables and requires the estimation of an effective sample size. 
The modified t-test helped to adjust Pearson’s correlation coefficients and the respective p-values, removing 
the variables whose p-value was no more significant if accounting for autocorrelation. 
All the significant correlation coefficients were then included in the calculation of the Suitability Analysis Index 
(SAI). This was essentially based on a weighted summation of the normalized density values of the variables 
proposed in this study (taking into account autocorrelation results) and on the use of the open sourced H3 
hexagonal grid presented by Uber Engineering in 20187. This was aimed at identifying the areas of Milan which 
could be exploited for more extensive data collection campaigns of traffic data by means of the installation of 
additional Wi-Fi sensors. 

 
Fig.3 An exemplification of the procedure applied to extract the land and Public Transport data on catchment areas 

3. Results 

3.1 Time-series analysis  
The analysis was aimed at identifying significant variations in the number of mobile devises detected through 
the Wi-Fi sensors during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3. The definition of the 
lockdown phases is based on the containment measures enforced by the local and national governments, 
which gradually prohibited any movements to, from and within the restricted territories to contrast the spread 
of contagion8. A series of information related to the timeline of the lockdown phases are described below: 
− pre-Covid-19 period (from January 1st, 2020, to February 22nd, 2020): The Covid-19 virus was first 

confirmed to have spread to Italy on January 31st, 2020. A cluster of cases was detected in the Lombardy 
Region on February 21st, 2020; 

 
7  See: https://eng.uber.com/h3 
8  See: http://www.governo.it/it/coronavirus-misure-del-governo 
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− phase 0 (from February 23rd, 2020, to March 8th, 2020): Milan was defined by the local government as a 
“yellow zone”. The Duomo Church, the Scala theatre and other cultural sites were temporally closed, as 
well as schools and Universities; bars and clubs closed at 6 pm; 

− phase 1 (from March 9th, 2020, to May 3rd, 2020): Milan was defined by the Italian government as a “red 
zone” (along with the entire Lombardy Region). In order to avoid gatherings, the access to green areas, 
educational, entertainment, sport, sustenance, religious and commercial public services was banned 
(apart from tobacco shops, food and do-it-yourself department stores). Public Transport capacity was 
reduced to 25% to allow social distancing. Any movement was prohibited to and from the restricted 
territories, as well as within the territories themselves. Apart from health and emergency reasons, the 
travel distance allowed from the place of residence was limited to 200 m; 

− phase 2 (from May 4th, 2020, to June 14th, 2020): Gradual easing of the lockdown containment measures, 
as the epidemic curve was in a downward phase. Green areas, sustenance, commercial and religious 
public services were reopened, but strongly limited to a fixed quota of accesses and services hours. Public 
Transport capacity was kept at 25%; 

− phase 3 (from June 15th, 2020, to July 31st, 2020): Further easing of the containment measures. 
Entertainment public service were reopened. Public Transport capacity was increased to 50%. 

The analysis of Wi-Fi data trends (see Tab.2 and Fig.4) was based on the total and average number of mobile 
devices detected per day through the entire network of Wi-Fi sensors, from January 2020 to July 2020. Data 
analysis highlighted a significant difference between the datasets related to the Pre-Covid-19 period and the 
lockdown phases, caused by the evolution of the containment measures put in place to contrast the spread of 
contagion. The results of a series of independent samples t-tests9 (two-tailed) showed a significant difference 
between the average number of mobile devices detected per day during the Pre-Covid-19 period and the 
lockdown Phase 0 (t (66) = 7.583; p < .01), Phase 1 (t (106) = 31.857; p < .01), Phase 2 (t (93) = 21.254; 
p < .01) and Phase 3 (t (98) = 15.004; p < .01). 
Further data analysis was based on the calculation of the percentage difference between the moving average 
of the number of detected mobile devices (MA, time period: 3 days) and the cumulative average of values 
(CA, time period: 7 months). This allowed us to smooth out short-term fluctuations of data and to highlight 
long-term trends (see Fig.4), such as: (i) the downsized amount of traffic volumes observed during the first 
week of January, 2020, due to the holidays; (ii) the stable trend of data during the Pre-Covid-19 period; (iii) 
the gradual downward trend of data during the lockdown Phase 0; (iv) the flattened traffic volumes during 
Phase 1 (total lockdown); (v) the gradual increase of traffic data during Phases 2 and 3, due to the easing of 
the containment measures. 

Phases Time period Total Average SD Trend 

Pre-Covid-19 From 01/01/2020 56,273,763 843.091 1,610.054 -- 

Phase 0 Until 08/03/2020 10,239,857 528.210 907.143 -37% 

Phase 1 Until 03/05/2020 8,437,822 141.186 690.046 -83% 

Phase 2 Until 14/06/2020 13,235,535 279.195 736.948 -67% 

Phase 3 Until 31/07/2020 22,913,563 440.942 1,064.999 -48% 

 

Tab.2 The total number of mobile devices detected during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3, 
with daily average and standard deviation. The table shows the percentage decrease of each lockdown phase compared to 
the Pre-Covid-19 period 

 
9  All statistics presented in this paper have been performed by using the software IBM SPSS Statistics v.27 and R 
 v.4.0.5 (Spatial Pack), and they have been conducted at the p < .01 level. 
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Fig.4 The number of mobile devices detected per day during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3, 
and the percentage difference between the moving average (MA) and the cumulative average of values (CA) 

3.2 Circadian rhythm and mobility profiles 

The number of detected mobile devices was further analyzed to characterize peak hours (i.e., circadian rhythm 
of the city) (see Fig.5). Results showed that the Pre-Covid-19 period was characterized by peak hours in the 
working days afternoon (highest peak hour on Friday afternoon at 5 pm) and on Saturday evening and Sunday 
afternoon. Phase 0 was characterized by an overall decrease of traffic volumes, with relative peak hours in 
the afternoon. Phase 1 was characterized, instead, by a flattened temporal distribution of values during the 
entire week. Phases 2 and 3 were characterized by an increase of traffic volumes. 

 
Fig.5 Peak hours per hour per day during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3. Colour palette refers 
to the percentile frequency distribution of values for the Pre-Covid-19 period 

The analysis of weekdays mobility profiles was based on the segmentation of the lockdown phases and on the 
calculation of the average hourly distribution of values (see Fig.6). Results highlighted consistent peaks for 
the Pre-Covid-19 period and all the phases (e.g., home-to-work and home-to-school mobility patterns, 
occasional demand related to leisure trips, etc.), exception made for the Phase 1. The flattened profile of 
Phase 1, from 8 am to 4 pm, is due to the absence of daily commuting and occasional leisure related trips. On 
the contrary, the analysis of weekends mobility profile highlighted an emerging phenomenon related to Phase 
1, whose profile is an inverted copy of the one depicted for the Pre-Covid-19 period: whereas the latter showed 
a PM peak and a growing demand before noon, the former presented an AM peak and a decreasing demand 
after noon. 
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Fig.6 The (a) weekdays and (b) weekends average distribution of the number of detected mobile devices during the Pre-
Covid-19 period and the lockdown Phase 0, 1, 2 and 3 

3.3 Spatial analysis of land and Public Transport data 
The proposed extensive GIS-based analysis10 was executed to calculate the density distribution of building 
typologies, green areas, amenities and Public Transport located within the catchment areas surrounding each 
Wi-Fi AP (see Fig.3 and Tab.3).  

Data Measure Average SD Pre-Covid P0 P1 P2 P3 
ReB_ca [m3/km2] 6,177,670.273 2,115,604.956 ● ● ● ● ● 

NReB_Ad_ca [m3/km2] 176,588.110 290,185.320 ● ● ⁓ ● ● 

NReB_Co_ca [m3/km2] 458,238.290 410,745.312 ● ● ⁓ ⁓ ● 

NReB_In_ca [m3/km2] 72,873.005 170,419.409 ● ● ⁓ ● ● 

NReB_ST_ca [m3/km2] 903,631.974 1,071,623.767 ● ● ⁓ ● ● 

GA_ca [km2/km2] 0.150 0.116 ● ● x ● ● 

A_Ed_ca [No./km2] 20.822 18.742 ● x x x x 

A_En_ca [No./km2] 10.042 12.003 ● x x x ● 

A_Fi_ca [No./km2] 24.071 22.473 ● ● ⁓ ● ● 

A_He_ca [No./km2] 21.339 11.781 ● ● ● ● ● 

A_Su_ca [No./km2] 181.786 75.624 ● ● x ⁓ ⁓ 

A_Sh_ca [No./km2] 726.923 396.651 ● ● x ⁓ ⁓ 

A_Ds_ca [No./km2] 29.461 57.364 ● ● ⁓ ● ● 

PT_Bi_ca [No./km2] 8.934 6.604 ● ● ● ● ● 

PT_Su_ca [No./km2] 2.141 2.802 ● ● ⁓ ⁓ ⁓ 

PT_Tr_ca [No./km2] 21.265 23.394 ● ● ⁓ ⁓ ⁓ 

PT_Bu_ca [No./km2] 31.233 23.665 ● ● ⁓ ⁓ ⁓ 

Tab.3 The density distribution of building typologies, green areas, amenities and Public Transport on catchment areas, and 
their closure/opening during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3 (i.e., ● open; ⁓ partially open; X 
closed) 

 

 
10 All GIS-based analyses presented in this paper have been performed by using the software QGIS v.3.16.1. 
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In this study, Clifford and Richardson (1989) effective sample size adjustment method was used to account 
for spatial autocorrelation in the Pearson’s Correlation Coefficient, employing spatial correlation matrices for 
each variable to jointly measure the dependence between the number of detected mobile devices, namely 
traffic data, and the density distribution of building typologies, green areas, amenities, Public Transport (see 
Fig.7 and Tab.4). The results of the analysis showed: 
− strong, positive correlation between the density distribution of department stores (A_DS_ca) and the 

traffic data collected during the Pre-Covid-19 period (R2 = 0.575; r = 0.761; n = 52; p < 0.01), Phase 0 
(R2 = 0.484; r = 0.696; n = 52; p < 0.01), Phase 1 (R2 = 0.259; r = 0.509; n = 52; p < 0.01), Phase 2 
(R2 = 0.492; r = 0.701; n = 52; p < 0.01) and Phase 3 (R2 = 0.521; r = 0.722; n = 52; p < 0.01); 

− moderate, positive correlation between the density distribution of residential buildings (ReB_ca) and the 
traffic data collected during the Pre-Covid-19 period (R2 = 0.202; r = 0.449; n = 52; p < 0.01), Phase 0 
(R2 = 0.125; r = 0.354; n = 52; p < 0.05), Phase 1 (R2 = 0.143; r = 0.379; n = 52; p < 0.01), Phase 2 
(R2 = 0.185; r = 0.430; n = 52; p < 0.01) and Phase 3 (R2 = 0.138; r = 0.371; n = 52; p < 0.01); 

− moderate, positive correlation between the density distribution of Service and Transportation facilities 
(ReB_ca) and the traffic data of the Phase 1 (R2 = 0.137; r = 0.371; n = 52; p < 0.01); 

− Moderate, positive correlation between the density distribution of entertainment, arts and culture 
amenities (A_En_ca) and the traffic data of the Pre-Covid-19 period (R2 = 0.423; r = 0.643; n = 52; p < 
0.01) and Phase 3 (R2 = 0.296; r = 0.544; n = 52; p < 0.01);  

− moderate, positive correlation between the density distribution of financial amenities (A_Fi_ca) and the 
traffic data of the Pre-Covid-19 period (R2 = 0.138; r = 0.372; n = 52; p < 0.05) and Phase 1 (R2 = 
0.109; r = 0.331; n = 52; p < 0.05); 

− weak, positive correlation between the density distribution of bike-sharing docking stations (PT_Bi_ca) 
and the traffic data of Phase 1 (R2 = 0.094; r = 0.306; n = 52; p < 0.05); 

− moderate positive correlation between the density distribution of education amenities (A_Ed_ca) and the 
traffic data collected during the Pre-Covid-19 period (R2 = 0.152; r = 0.390; n = 52; p < 0.05). However, 
it has to be noted that this result was excluded from the analysis, since schools and Universities were 
permanently closed during the entire period of reference. 

 

Fig.7 Linear trend lines show (when applicable and significant) the correlation results between Wi-Fi data (TD) and the land 
and Public Transport data extracted on catchment areas (z values in a range between 0 and 1) 
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Data TD_Pre-Covid-19 TD_Phase 0 TD_Phase 1 TD_Phase 2 TD_Phase 3 
ReB_ca 0.449** 0.354* 0.379** 0.430** 0.371** 

NReB_Ad_ca 0.002 0.002 -0.037 -0.025 0.020 

NReB_Co_ca -0.168 -0.176 -0.142 -0.164 -0.018 

NReB_In_ca 0.109 0.192 -0.003 0.013 0.118 

NReB_ST_ca 0.326 0.149 0.371** 0.222 0.253 

GA_ca -0.085 -0.021 n/a -0.171 -0.082 

A_Ed_ca 0.390* n/a n/a n/a n/a 

A_En_ca 0.643** n/a n/a n/a 0.544** 

A_Fi_ca 0.372* 0.206 0.338* 0.259 0.253 

A_He_ca -0.130 -0.145 -0.002 -0.069 -0.125 

A_Su_ca 0.156 0.061 n/a 0.135 0.104 

A_Sh_ca 0.274 0.231 n/a 0.254 0.197 

A_Ds_ca 0.761** 0.696** 0.509** 0.701** 0.722** 

PT_Bi_ca 0.253 0.112 0.306* 0.216 0.226 

PT_Su_ca 0.289 0.164 0.154 0.133 0.174 

PT_Tr_ca 0.047 -0.015 -0.047 -0.087 -0.063 

PT_Bu_ca -0.003 0.093 -0.054 0.121 0.060 

Tab.4 Corrected Pearson’s coefficient and adjusted p-values related to the correlation results between traffic data and the 
land and Public Transport data extracted on catchment areas (**. Correlation is significant at the .01 level; *. Correlation 
is significant at the .05 level) 

3.4 Suitability Analysis Index 
Focusing on the number of mobile devices detected during the Pre-Covid-19 period, the executed correlation 
analysis showed that some of the considered land and Public Transport data were effective indicators of higher 
Wi-Fi data, with reference to residential buildings (ReB_ca), education amenities (A_Ed_ca), entertainment 
amenities (A_En_ca), financial amenities (A_Fi_ca) and department store (A_Ds_ca). This was further analyzed 
to identify the areas of Milan which could be suitable for more extensive traffic data collection campaigns. 
Thus, a Suitability Analysis Index (SAI) was defined through the density distribution of relevant data on the 
entire territory of Milan: 

!=	 	$%&((%)!_#$% + 	+_-.	((%)!_&_'( + 	+_-/((%)!_&_') + 	+_01((%) + 	+_23((%)!_&_*+!_&_,- 	
.

/01
 

The proposed index was calculated through the weighted summation of normalized density distribution of 
values (z values in a range between 0 and 1) on the H3 hexagonal grid proposed by Uber Engineering in 2018. 
Among the several resolutions available for the H3 grid, the current work adopted the one characterized by 
cells with an average diameter of the circumscribed circle of 395 meters, in line with the commonly known 
comfortable walkable distance of 5 minutes (Buhrmann et al., 2019). The constant parameters K_ReB 
(corresponding to 0.15), K_A_Ed (corresponding to 0.15), K_A_En (corresponding to 0.15), K_A_Fi 
(corresponding to 0.15) and K_A_DS (corresponding to 0.4) were weighted by discretizing the r results of 
spatial autocorrelation analyses11 (Lee Rodgers and Nicewander, 1988) (see Tab.4), in order to accentuate 
the impact of A_DS on SAI (∑ constant parameters = 1). Results (see Fig.8) showed the areas of Milan which 
could be effectively exploited for extensively monitoring high traffic data by means of the installation of 
additional Wi-Fi sensors (areas characterized by SAI ≥ .8). The granularity and widespread coverage of results 
showed the suitability of both central and peripheral areas of the city, as well as the overlap of the modeled 
data with the major transport infrastructures. 

 
11  The constant parameters related to strong (K_A_DS) and moderate correlation results (K_ReB, K_A_Ed, K_A_En 
 and K_A_Fi) respectively correspond to .4 and .15. 
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Fig.8 The map shows the results of proposed Suitability Analysis Index, aimed at identifying the areas of Milan which could 
be suitable for the installation of additional Wi-Fi sensors to collect traffic data (areas characterized by SAI ≥ .8) 

4. Discussion 
The development of location detection systems (e.g., image stream, radio frequency, cell network, bid stream, 
light pulse techniques) enables to monitor, understand and predict the mobility patterns of the city users. In 
particular, Wi-Fi technology is recognized as one of the most effective sensors for monitoring activity patterns 
with high spatial and temporal granularity (e.g., installation and maintenance costs, precision rate, energy 
consumption, robustness to weather and light conditions, compliance to the GDPR). However, the capability 
of this technology to collect reliable traffic data is limited by systematic under sampling and oversampling 
errors (Soundararaj et al., 2020) and by the difficulties in distinguishing traffic flow typologies (e.g., vehicular, 
pedestrian, etc.). 
In this context, the proposed study was based on the analysis of a large sample of data collected during a 7-
month period (January to July 2020) through a network of 55 Wi-Fi sensors distributed in Milan. The research 
was firstly aimed at testing the effectiveness of Wi-Fi technology to gather aggregated traffic data in large 
scale scenarios. From a general point of view, the achieved results confirmed the effectiveness of this data 
collection method for characterizing the evolution of the lockdown phases and activity patterns. The robustness 
of the proposed analysis of Wi-Fi data trends among the lockdown phases is based on the use of the same 
set of sensors, which has been preliminary validated among few malfunctioning Wi-Fi APs.  
However, the accuracy of the presented results could be limited by an under sampling error due to technical, 
territorial and social factors: (i) mobile devices’ sensitivity (e.g., connection features, battery level, orientation, 
etc.); (ii) arbitrary location of the Wi-Fi APs with respect to the entire territory of the city of Milan, as distributed 
in several department stores, shops and public services; (iii) socio-demographics characteristics of the 
population related to mobile devices’ ownership; and (iv) partiality of the considered sample size compared to 
total amount of daily trips related to number of inhabitants (1,242,120) and workers (1,016,790) of the city 
of Milan (ISTAT-Italian National Institute of Statistics, 2011). Furthermore, the reliability of the collected data 
could be limited by an over-sampled representation of the population linked to: (v) possibility of a user of 
carrying multiple devices; (vi) multiple probe requests from a single mobile device to a Wi-Fi AP; and (vii) 
background noise due to fixed devices (e.g., routers, desktop computers, etc.).  
In order to mitigate oversampling inaccuracies, filtering and clustering procedures have been taken by the 
data provider by removing probe requests from fixed devices, as well as by associating consecutive probe 
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requests to the correct user. However, data sampling is estimated by the provider at being 2-10% above 
ground truth. Thus, future steps of this research will be based on further developing of a methodology to filter 
out background noise and improve data accuracy. Moreover, taking advantage of previous works already 
performed by the authors12, future work will be based on the use of computer vision techniques (Zhao et al., 
2019) to cross check the validity of Wi-Fi-based traffic data through images stream acquisition systems. 
Existing CCTV infrastructures or ad hoc installed cameras could be coupled with Wi-Fi sensors, with the aim 
to obtain comparable analyses and a validation methodology on vehicles and pedestrian activity. 

5. Conclusion and Future Work 
Location detection systems are becoming a valuable support for the activity of transport planners and decision 
makers by unveiling hidden mobility patterns in cities. Nowadays, this has become even more crucial 
considering the unprecedented effects of disruption of the Covid-19 pandemic on urban mobility. In this 
context, the proposed study focused on the analysis of number of mobile devices detected through 55 Wi-Fi 
APs, placed in several shops, department stores and public services in the city of Milan. First, time series 
analyses unveiled relevant trends, peak hours and mobility profiles. Then, the number of mobile devices 
detected during the Pre-Covid-19 period and the lockdown Phase 0, 1, 2 and 3 was correlated to several city 
features, such as building typologies, green areas, amenities and Public Transport, through an extensive GIS-
based analysis. Here, the main purpose was to understand which characteristics of the city would create 
resilient neighborhoods during the different phases of the Covid-19 pandemic. 
Results showed that the concentration of both residential buildings (ReB_ca) and department stores (A_Ds_ca) 
was positively correlated with Wi-Fi data among all lockdown phases. The containment measures put into 
place during Phases 0, 1, 2 and 3 were based, in fact, on reducing or prohibiting any movements from place 
of residence, apart from health and emergency reasons and food shopping. Furthermore, results showed that 
the catchment areas characterized by the concentration of service and transportation facilities (NReB_ST_ca) 
and financial amenities (A_Fi_ca) were more resilient during the lockdown Phase 1, considering the relative 
distribution of Wi-Fi data. The increase of Wi-Fi data during Phase 1 around catchment areas characterized by 
the presence of bike-sharing docking stations (PT_Bi_ca) could be related, instead, with the city users’ need 
to avoid crowded transport infrastructures by using safe and contactless travel options, such as cycling. 
Furthermore, the correlation analysis focused on the Pre-Covid-19 period showed that some of the considered 
land and Public Transport data were effective indicators of higher Wi-Fi data, with particular reference to the 
concentration of residential buildings (ReB_ca), education (A_Ed_ca), entertainment (A_En_ca) and financial 
amenities (A_Fi_ca), and department store (A_DS_ca). This analysis has notable implications for future 
applications, considering the possibility to forecast traffic data through time-invariant characteristics of the 
urban settlement. Thus, results were further analyzed to define a Suitability Analysis Index, aiming at 
identifying the areas of Milan which could be suitable for more extensive traffic data collection campaigns 
based on the installation of additional Wi-Fi sensors. Results of correlation analysis focused on the lockdown 
phases open up debate on the need to design cities to have a polycentric structure, with several and distinctive 
areas of attraction for the city users (i.e., 15-minute city concept), in order to be resilient to extraordinary 
events such as the Covid-19 pandemic. Almost 70 years after Jacobs (1961) arguments for smaller and 
connected neighborhoods were published, the world is beginning to fully grasp the importance of mixed-use 
urban planning (Song et al., 2013). Such plans are also in keeping with the General Theory of Walkability 
proposed by Speck (2013), which states that the level of pedestrian friendliness of urban areas is directly 
related to their level of usefulness and attractiveness, pinned down in metrics of land-use mix, street 

 
12  See: https://research.systematica.net/journal/looking-with-machine-eyes-how-deep-learning-helps-us-read-our-
 cities/ 
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connectivity and commercial density as well as poly-centricity to ensure service coverage within short walkable 
distances. Future work will be based on the development of Wi-Fi sensing applications for monitoring traffic 
data in near real time (Li et al., 2020), considering that the triangulation of APs enables both outdoor and 
indoor data collection (Soundararaj et al., 2020). The planned activity could support the management of crowd 
dynamics on occasion of big events (e.g., trade exhibitions, music, art and cultural festivals, sport events), 
characterized by the scarcely predictable impact of extraordinary touristic flows. In analogy with the pilot study 
proposed by Transport for London (2019), the application of the Wi-Fi technology to monitor traffic data in 
real time in mass-transit and gathering facilities could enable, in fact, to assess the contextual conditions of 
service, detect anomalies, avoid service disruption and guarantee the comfort and security of the users. 
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