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Abstract  
The quantification of the built environment has been approached from two major perspectives-regional-
scale and neighbourhood-scale. Few studies have attempted to quantify the built environment from the 
neighbourhood-scale and none of these studies attempted to examine the interactions that exist between 
the respective built environment indicators and the spatial variation of such interaction which may help 
under the emerging travel-related prototypical neighbourhoods. Two types of datasets were used in the 
study and these are neighbourhood-based field surveys and data extracted from a satellite image. These 
were used to compute indicators which were in turn used to measure the built environment of Benin 
metropolitan region. The interaction between the indicators revealed that the quantification of the built 
environment categorised the region into 3 distinct prototypical neighbourhoods-pedestrian-oriented zones, 
transit-oriented zone, and car-oriented zone. 
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1. Introduction 
The built environment (BE) describes the anthropogenic related spatial and physical entities of an urban 
landscape characterised by the land-use patterns, neighbourhood design and urban morphology. The BE has 
been argued in the literature (Schwanen & Mokhtarian, 2005) to be a fundamental factor in the study of travel 
behaviour (TB). The drive to understanding this link has continued to provoke attention from diverse disciplines 
because the findings in most of the existing literature show a pronounced level of inconsistency (Yang et al., 
2019). For example, a handful of literature has revealed that increased urban area density, proximity to certain 
linear infrastructure and land-use diversity are the three main components of the BE that influence TB since 
they are associated with smaller shares for the private car and a larger proportion of travel by public mode 
and cycling/walking (Limtanakool et al., 2006; Schwanen et al., 2004; Frank & Pivo, 1994; Newman & 
Kenworthy, 1989; Dargay & Hanly, 2004). Other studies have reported that cities with compact density are 
associated with a longer travel length (Norland & Thomas, 2007). Yet, other studies have suggested that the 
relationship between the BE and TB is mostly equivocal because there are no direct effects (Kockelman, 1997; 
Limanond & Niemeier, 2004; Miller & Ibrahim, 1998; Pickrell, 1999; Badoe & Miller, 2000). 
The major reason for the mixed findings may be tied to the selected variables, methods and scale of measuring 
the BE indicators. The majority of the existing literature tends to quantify the BE from a larger grain/macro-
scale perspective (Yang & Zhou, 2020; Tsai, 2005; Nari & Zhang, 2018). Fewer studies have quantified the BE 
using a neighbourhood or finer/micro-scale analysis (Lee & Moudon, 2006; Guzman et al., 2020) and they 
paid no attention to the neighbourhood types that may emerge from the integration of the BE indicators and 
how such spatial units are defined from travel-based modal split perspective. Also, the complexity of the BE 
requires the consideration of several other dimensions (beyond density, diversity and design) holistically to 
offer an all-inclusive and robust measure that includes all aspects of the BE of the city under study. The 
identified gaps were addressed by this study thereby presenting a significant contribution to global literature 
on urban studies. 
This study is necessary because each neighbourhood may likely present distinct characteristics that may impact 
travel activities differently. The BE has been measured at two major scales-local-neighbourhood and 
metropolitan-wide (Comendador et al., 2014). In contemporary literature, several interrelated spatial 
indicators have been used to quantify the BE. Prominent among these are density, diversity and design 
(Cervero & Kockelman, 1997; Lee & Moudon, 2006). Quantifying BE within the scale of the neighbourhood 
may reveal heterogeneous urban landscape patterns within the metropolitan region. It is expected that the 
result would promote understanding and aid further analysis regarding the interactions of the BE indicators 
within each neighbourhood. The major objectives of this study are to quantify the BE of the Benin metropolitan 
region (BMR), a large African-sized urban area (a case study from a developing region) using several spatial 
indicators disaggregated to the neighbourhood-level which is the scale of analysis. Also, the interactions of 
these indicators within the neighbourhoods were analysed. It is expected that each spatial unit would show 
not only the associated but also the strongest BE component that characterises such neighbourhood. This may 
help to understand how each spatial unit would possibly influence TB. Such findings will guide the decisions 
of urban planners and transport analyst on the appropriate land-use policies and transport planning strategies 
that may drive urban sustainability.  

2. Literature Review 

2.1 Measures of the built environment 
The quantification and spatial characterisation of the urban BE of any metropolitan region are far from been 
significantly achieved and has presented a challenging scenario regarding fully understanding and achieving a 
consensus on the BE-TB interaction. This absence of consensus may be linked to both the methodological and 
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theoretical setbacks reflected in efforts to correctly explain BE interactions with other urban activities and its 
quantification within a specific spatial extent (Gehrke and Clifton, 2016). A plethora of other empirical studies 
mostly emanating from the US utilizes either sprawl or land-use mix to quantify the BE of cities (Yang & Zhou, 
2020; Ewing et al., 2016; Gehrke & Clifton, 2017; Burchell et al., 1998; Cervero & Wu, 1998; Christian et al., 
2011; Mavoa et al., 2018).  
Some other studies have taken it further by identifying and integrating a series of BE indicators to define the 
urban physical landscape. Prominent among these are the 3Ds concept consisting of density, diversity and 
design of urban areas (Cervero & Kockelman, 1997) which investigated the influence of the BE on travel 
demand.  The BE of the San Francisco Bay Area was measured along three chief dimensions-density, diversity 
and design. Other studies have further extended these indicators by incorporating two additional D indices 
and routes and these are destination accessibility, distance to transit and travel route (Lee & Moudon, 2006; 
Ewing et al., 2014; Ewing & Cervero, 2001).  
The 5 Ds indices consisting of density, diversity, design, destination accessibility, distance to transit (Ewing & 
Cervero, 2010; Choi, 2018) and travel route characteristics identified so far in literature tend to capture a 
substantial number of dimensions that define the BE. However. it is clear in the literature that the route 
characteristics identified by Lee & Moudon (2006) are captured in the design dimension earlier presented by 
Cervero & Kockelman (1997). Lee & Moudon (2006) described route index from ratio, length and area 
perspective-the ratio of a more and less direct route to access the closest urban activities such as schools and 
shopping stores; the total length of sidewalk with a spatial unit; and lesser grain size of the household block. 
To achieve a composite and robust measure of BE especially concerning TB understanding, there is a need to 
include major indicators that may affect all aspects of travel modes such as transit, car and walking/cycling. 
Some scholars have achieved a high level of indicators selection for quantifying the BE characteristics and its 
relation to land-use and TB studies but then some of these may have selection bias (Lee & Moudon, 2006) 
since the selected indicators only included variables that may influence walking mode leaving out other equally 
significant modes. Nkeki & Asikhia (2019) included urban sprawl indicators to account for the BE effect on car 
mode choice.  
Quantifying the BE using the 5Ds indices (density, design, diversity, distance to transit or some centrality, 
destination accessibility (Ewing et al., 2014; Choi, 2018) and sprawl (S) as included in Nkeki & Asikhia, (2019) 
would, without doubt, present a robust, well represented and consolidated measure of any BE. Also, it would 
help to build a useful framework in global literature that may bring some level of order and consistencies in 
land-use-TB related studies (Ewing et al., 2014). 

2.2 Scales of measuring built environment 
Literature has shown that the scale of modelling the effects of the BE on TB continue to play an integral and 
intriguing role in the consistency of the results (Yang et al., 2019; Handy et al., 2005). By implication, BE 
needs to be defined at such a scale since travel-land-use interactions take place at such a geographic unit. 
However, two major scales of modelling BE have been identified in the literature, they include regional or 
metropolitan-wide level and local or neighbourhood level of analysis. The formal is often based on aggregate 
methodology by examining features at the macro/holistic level through averaging out all outcomes or 
measuring large geographic framework such as region, metropolitan area, states, political area, urban city, by 
sprawl indicator (Yang & Zhou, 2020; Tsai, 2005; Nari & Zhang, 2018). This geographic scale has been 
seriously criticised for its tendency of introducing bias and may cause ecological fallacy, hence impacting 
significantly on the results (Ewing et al., 2017). The latter, on the other hand, is based on the disaggregate 
methodology which analyses data at the micro-level or finer grain spatial unit. It defines the built environment 
closer to the household location by breaking down outcomes into a smaller geographic framework such as 
neighbourhood, street block, etc (Lee & Moudon, 2006; Guzman et al., 2020).  
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2.3 Indicators of the built environment and their implications to travel pattern 
The 5Ds and S indicators of quantifying the BE as identified in the existing literature exhibit significant influence 
on TB. Each may have some level of an implication that may help to characterise the spatial units of interest 
based on the interaction of these dimensions.  
The density dimension had been defined with various variables that ranged from population distribution to 
urban footprint distribution. Population density as a variable to define the density dimension of the BE is 
primarily and commonly adopted as the measure of density (Choi, 2018; Ewing et al., 2017; Yang & Zhou, 
2020), this is because the data is mostly and readily accessible and very easy to compute. Others adopted 
residential and employment densities which measures the activity intensity within a spatial unit (Yu & Peng, 
2020; Ewing et al., 2014). Yet, others included infrastructural density which measures the intensity of urban 
infrastructures such as road, rail and paved surfaces (Yu & Peng, 2020; Nari & Zhang, 2018), in these studies, 
density was used to represent the intensity of people residing interactively within an area. Another measure 
of density dimension is the urban patch index (Nkeki & Asikhia, 2019; Wang et al., 2020). This is a robust 
method though not as popular as the population intensity method due to its computational complexity and 
data scarcity. It measures the intensity and fragmentation of the general urban landscape which consist of 
population residence, employment spaces and overall activities and infrastructure such as roads, rail, 
pavement, etc. Also, it shows that true density can influence travel in all directions. However, as shown in 
literature density exhibit a significant influence on TB (James et al., 2014; Cervero & Kockelman, 1997). For 
example, higher density encourages walking and other non-motorised travel modes by implication, more 
compact geographic landscape may lower the automobile usage (Cervero & Kockelman, 1997; Nari & Zhang, 
2018; Cho & Rodriguez, 2014; Levinson & Wynn, 1963) and also, shortens the travel distance (Hu & Huapu, 
2007). 
The diversity dimension simply describes the level of land-use mix in an urban space. The land-use mix is an 
important variable in urban studies since it promotes understanding of the land-use pattern and its relationship 
with other interacting activities. It is also used to calculate the magnitude of balance among the land-uses 
with a defined spatial unit. The diversity dimension has been used for over 2 decades to quantify the BE for 
TB related studies (Ewing et al., 2014; Nkeki & Asikhia, 2019; Gehrke & Clifton, 2016). In land-use-transport 
planning, diversity has been shown in previous studies to significantly impact TB. For example, higher land-
use mixed areas tend to encourage walking due to the short distance that connects activity locations while 
lower mixed areas tend to promote longer travel distance and hence encourages motorised travel modes 
(Guzman et al., 2020; Ewing et al., 2014; Gehrke & Clifton, 2016).  
Design dimension typically describes the general patterns of infrastructure that result in a specific spatial 
arrangement. Design dimension is among the first 3D variables, which is often measured by urban overland 
linear transport infrastructure, such as road, rail and pedestrian network pattern (Ewing & Cervero, 2010); 
block size, the density of 4-way intersections, sidewalk density and number of parking space (Nkeki & Asikhia, 
2019; Choi, 2018). Design variables have been found to significantly affect travel. For example, literature (Yu 
& Peng, 2020) has shown that road density may produce more ride-sourcing demand; Ewing et al. (2014) 
revealed that 4-way road intersections increase walking trips (though there is a mixed reaction in literature as 
some believe that it may trigger the search of other modes for intermediate-distance travel); yet another study 
found that smaller block sizes and longer sidewalks along the main streets significantly influences walking (Lee 
& Moudon, 2006). However, it is believed that a certain urban design pattern promotes certain TB. For 
example, the presence of sidewalk in a neighbourhood may encourage walking and discourages automobile 
trips; the high the density of street intersection, the higher the likelihood to walk because higher urban density 
and activity concentration may emerge; a grid pattern of road network may force block kind of neighbourhood 
design which encourages people to walk; corridor road design encourages transit dependence (Asikhia & 
Nkeki, 2013). 
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The destination accessibility dimension measures the ease of accessing the commuters residence or 
source/neighbourhood from a certain activity-based location such as the central business district (CBD), 
shopping centre, etc. In most cases, a neighbourhood’s level of accessibility is measured by its distance from 
the CBD. This is because the shorter the distance of a neighbourhood to a major activity centre, the shorter 
would the commuters travel, it is expected that this would promote walking and for a neighbourhood with an 
average distance to an activity centre with a  grid design, car usage may be encouraged while in a corridor 
road design, the probability for transit usage may increase (Asikhia & Nkeki, 2013; Schwanen et al., 2001). 
The longer the distance of a neighbourhood from an activity centre, the more the likelihood of automobile 
dependence. The destination accessibility dimension has been quantified with several variables such as 
regional or local trip attraction activities, the distance between residence and job location. 
Distance to transit has been quantified by some variables such as the average of the shortest route between 
commuters residences or work location and the nearest bus stop/rail station (Ewing et al., 2014; Choi, 2018); 
transit route density of a neighbourhood (Nkeki & Asikhia, 2019). The closer a neighbourhood is to a transit 
route or the higher the transit route density, the higher the probability of transit performing more than other 
modes. This dimension tends to strongly encourage automobile usage and discourages walking, biking and 
other pedestrian modes. It has been shown to manifest a positive relationship with TB (Yu & Peng, 2020).  
Sprawl dimension is often neglected in choosing BE indicators that influence TB. Very few studies have used 
sprawl to quantify BE (Tsai, 2005; Nkeki & Asikhia, 2019). It may be mistaken for a kind of low-density 
development. Cities may grow either by increasing density or sprawling (Nkeki, 2016). Whatever the case, 
sprawl and density influence TB differently. For example, higher density promotes pedestrian modes while a 
higher level of sprawl encourages automobile usage.   

2.4 Summary 
The review of existing literature demonstrates that very few or no study has holistically measured the BE using 
several other dimensions that look beyond density, diversity and design or distance and destination 
accessibility. Most of the literature either utilized the initially proposed 3Ds or some of the 3Ds and included 
the later additional 2Ds. It is the view of this study that to conduct a robust quantification of the BE for TB 
study, all dimensions/indicators should be exhausted. Also, the review shows that no study has attempted to 
examine the interactions between the BE indicators and how such interactions varies spatially. This study 
intends to present an all-inclusive and robust quantification of the BE for TB study. 

3. Methodology 

3.1 Study region  
The study area is the BMR which is roughly 506 km2 in the urbanized area and has over 1.1 million inhabitants. 
From the census estimate, the region is composed of 248,620 households and an average of 6-7 persons per 
household (NPC, 2006). It is located between latitudes 6° 16′ to 6° 33′ N and longitudes 5° 31′ to 5° 45′ E 
(Fig. 1a & b). There are 55 major neighbourhoods characterised by high to low urban density from the CBD. 
Density reduces with increasing distance from the CBD. Unlike the cities of most advanced countries where 
building floors reach an average of 10, the region is dominated by single floor buildings making density 
essentially horizontal. The CBD is a prominent region known for essentially commercial activities and it falls 
within the King square/core neighbourhood (see map ‘b’ in Fig.1) 
Also, the massive unauthorized land-use conversion occurring in the CBD is unprecedented. However, in this 
area, commercial activities predominate and rapidly engulfing and replacing other land-uses. 
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Fig.1 Location of the study area map ‘a’ is the location of Benin in Nigeria; map ‘b’ is Benin metropolitan region and the 
neighbourhoods; map ‘c’ is land-use of Benin 
 
For example, within the King-Square/Ring-Road axis, tending towards the New-Benin market axis 
(northeastern part of the region), commercial land-use continuously spread over roughly 1.7 km2. At the New-
Benin market area, commercial land-use formed a cluster covering over 1.2 km2. Such activities are also found 
along trunk roads (Fig.1c). Predominantly, residential land-use tends to concentrically envelop the core region 
and spread towards the outer part of the metropolis, particularly along the trunk roads. 

3.2 Data  
Two major sources of data were utilized in this study and these datasets were categorized into primary data 
and secondary data. The first part of the primary datasets was obtained from a comprehensive neighbourhood-
based field survey. This involved the identification, recording and capturing of data with a GPS device. The 
datasets that were extracted from this field survey were implemented to derive such indicators as the 
availability of sidewalks in the neighbourhood and the number of regular bus routes within the neighbourhood. 
The second part of the primary data collection comprises the counting of housing (residence) and job 
(employment, commercial and administrative land-uses). This was done with a 200m x 200m quadrat which 
covers 40,000 m2 of urban space. The mean centre points of each of the identified 55 neighbourhood polygons 
were determined with ArcGIS spatial statistical module. With the mean centre tool, a 200m x 200m quadrat 
was delineated for each polygon and with the help of the worldview satellite data, the locations on the ground 
were identified before fieldwork. The number of houses and job locations were captured for the 55 locations 
from the field. This data was used for diversity analysis. 
The secondary datasets were extracted from the high-resolution (2m spatial resolution) worldview image 
(provided by Digital Globe Foundation) of the entire region. These datasets were used to calculate the urban 
density and local sprawl indicators. 
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3.3 Satellite data processing and classification 
The satellite data was classified to assess the built-up area of the region. Computing urban density and local 
sprawl indicators, urban patches were mined from the worldview imagery using GIS and remote sensing 
procedures. These procedures combined presented a robust empirical methodology prescribed in this study 
for measuring the BE. This spatial data was used for urban density and local sprawl indexes computation. The 
overall proposed procedure for the analysis is shown in Fig.2. The image was entered into ENVI version 5.1 
for seamless mosaicking since the imagery was acquired in tiles (mosaicking is a photogrammetric algorithm 
that helps to combine several raster scenes into one while maintaining a uniform spectral characteristic). The 
single raster scene was re-projected and transformed. The projected coordinate system, with Universal 
Transverse Mercator (UTM)–Minna UTM zone 31°N was adopted.  
 

 
Fig.2 A methodological flow chart for the land-use classification and urban patch extraction  
 
From ENVI the transformed image was exported to imagine raster (.img) for further correction concerning 
spectral and geometric distortion. The image was subjected to orthorectification processes in ERDAS IMAGINE 
photogrammetric software 2014 version. In carrying out orthorectification processes, 45 well-distributed 
ground control points within the study region and ancillary (SRTM DEM) data were employed. To further 
improve the image (SRTM data) spectral quality, it was resampled independently in ERDAS IMAGINE using 
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the resample pixel size algorithm in the software. The bilinear interpolation resampling method was used. The 
bilinear interpolation method was preferred because it is the most appropriate resampling technique for 
continuous value data like elevation and slope. The DEM image was resampled from 30 x 30 m to 2 x 2 m. 
The reason for this is to avoid pixel conflict during image–to image rectification process. The rectified and 
enhanced world view data in IMAGINE raster format was clipped to the study region using the mask algorithm 
in ERDAS IMAGINE.  
There are two types of image classification in GIS operation–unsupervised and supervised classification. Both 
procedures were applied to the image scene to get possible maximum accuracy in characterisation. The 
unsupervised classification with ISODATA (Iterative Self–Organising Data Analysis) clustering approach was 
applied, this allowed preliminary land-use class selection and interpretation. It automatically aggregated the 
multispectral data into several classes based on intrinsic similarity within the pixel of the image. This spectral 
detail assisted in the class selection and naming through on-screen visual assessment, which involves the 
careful grouping of pixels and delineating areas with a large quantity of a particular class. The proposed classes 
for the study region include urban or built-up area, vegetation area and water body. Other land-uses were not 
included because extracting the built-up area is the focus of the analysis. There were 5 initial classes. The 
pixel cluster that defined the urban area; those that defined the water body and those that defined vegetation 
were broken into riparian vegetation along the river; dense vegetation cluster and light vegetation clusters 
agricultural areas. Since the focus is the urban footprint, the riparian, dense and agricultural vegetation related 
classes were classified as vegetation. Generally, the unsupervised classification returned 121,705,593 pixels 
for built-up area; water body has 996,714 and vegetation has 333,596,613 pixels.  
  

Ground truth (Pixels) 
Class Built–up area Waterbody Vegetation Total 
Unclassified 0 0 0 0 
Built–up area 129,524 461 10,496 140,481 
Waterbody 310 18,846 1,042 20,198 
Vegetation 325 68 782,870 783,263 
Total 130,159 19,375 794,408 943,942 

Ground truth (Percent) 
Class Built–up area Waterbody Vegetation Total 
Unclassified 0.00 0.00 0.00 0.00 
Built–up area 99.51 2.38 1.32 14.88 
Waterbody 0.24 97.27 0.13 2.14 
Vegetation 0.25 0.35 98.55 82.98 
Total 100.00 100.00 100.00 100.00 
 
Class Commission (Percent) Omission (Percent) Commission (Pixels) Omission 

(Pixels) 
Built–up area 7.80 0.49 10,957/140,481 635/130,159 
Waterbody 6.69 2.73 1,352/20,198 529/19,375 
Vegetation 0.05 1.45 393/783,263 11,538/794,408 
 
Class Prod. Acc. (Percent) User Acc. (Percent) Prod Acc. (Pixels) User Acc. 

(Pixels) 
Built–up area 99.51 92.20 129,524/130,159 129,524/140,481 
Waterbody 97.27 93.31 18,846/19,375 18,846/20,198 
Vegetation 98.55 99.95 782,870/79,4408 782,870/783,263 
Overall Accuracy = (931,240/943,942)  98.65%; Kappa Coefficient = 0.9521  

Tab.1 Confusion matrix for supervised image classification 
 
The supervised classification was conducted by collecting training samples using the region of interest tool 
(ROI) of ENVI and these sample polygons were saved as a spectral signature file for further usage. This was 
achieved using the spectral information from the unsupervised classification method and additional details 
were extracted from various statistical computations during training sample creation. Land-use supervised 
classification was performed using the maximum likelihood algorithm with equal a priori probability weighting 
(which guarantee all classes having the same a priori probability).  
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Classification accuracy assessment for the image was carried out with about 100 randomly distributed ground 
truth points within the limit of the study region. The generated points are based on stratified random sampling 
type and stratification is proportionate (i.e. 40, 40 and 20 points for urban, vegetation and waterbody 
respectively) across all classes. These points were used to compute the confusion matrix for the classified 
data, based on the Kappa coefficient (Tab.2). The overall accuracy of the classification is 98.65% with a Kappa 
Coefficient of 0.95. The observed high level of classification accuracy was expected because three classes of 
land-use types were selected which correspondingly are the major classes distinctively captured by the very 
high-resolution imageries. Also, the various image spectral enhancements implemented made the classification 
less complex by grouping similar pixels. The classified land-use data were exported and entered into ArcGIS 
10.4.1 software from where such data was manipulated using the raster calculator in the ArcGIS toolbox. The 
raster calculator was used to extract the built-up area from the classified raster. This was carried out by 
reclassifying the built-up area as 1 and others as 0 using the reclassify tool in ArcGIS. The raster calculator 
was then instructed to extract 1 (built-up area) as a separate layer. This facilitated statistical estimation and 
disaggregation of the classes and patches. The extracted urban patches were used as data for calculating the 
urban density and sprawl. 

3.4 Indicators 

Urban patch density 
Density was quantified using a spatial metrics-urban patch density index (PD). The value of PD is simply the 
number of urban patches in a neighbourhood divided by the total landscape area (neighbourhood) in m2. This 
was calculated using Eq.1 in Tab.2 presented by (McGarigal & Ene, 2014).  
 

Indicators Formula/measurement Description 

Density dimension 
Urban density !" = !

" 	(1,000, 000)                              (1) 
 

Density of built-up 
patch in a neighbourhood calculated by 
urban patch density index (PD).  

Diversity dimension 
Land-use mix 

(*+) = (−1) × #$!"# %×'($
!"
# %)$

!$
# %×'($

!$
# %*

'((()          (2) 
 

The proportion of jobs to housing location 
within neighbourhood-calculated by a 
spatial entropy index. The value of the 
index varies between 0 and 1.  

Design dimension 
Street 
intersection 
density 

.+	"/01234 = 	!-!" 	(1,000, 000)               (3) 
 

The density of street intersection within 
neighbourhood-computed by street 
intersection density index (SI Density).  

The presence of 
sidewalks in the 
neighbourhood 

Binary Availability of sidewalk in the 
neighbourhood-measured with binary 
1=yes; 0=no. 

Destination accessibility dimension 
Distance to CBD Average length The average distance of the neighbourhood 

to CBD in Km. 
Transit route density/accessibility dimension 
Transit 
accessibility 

Count Number of regular bus routes within the 
neighbourhood 

Sprawl dimension 
Local sprawl 5( = 	−	∑!.789/(!.)                             (4) 

 
The index gives a value that varies from 0 to 
+0(0).  

Tab.2 Definition of indicators for measuring built environment 
 
In the formula N = overall sum of patches in the neighbourhood excluding any background patches; A = area 
coverage of the neighbourhood under consideration in m2. To enable the interpretation of patch density per 
km2, the PD value for each neighbourhood was multiplied by 1,000,000. FRAGSTATS spatial metric was used 
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to conduct the calculation (Nkeki, 2016; Ramachandra et al., 2012). In the interpretation, increasing value of 
PD means disaggregation of the urban landscape (low density), while decreasing value of PD implies increasing 
density and more compacted landscape. 

Land-use mix 
Spatial entropy statistic was used to calculate the land-use mix utilizing data from the 200m x 200m quadrat 
this consist of the number of housing and job location for the 55 neighbourhoods in the study area. The major 
reason for modelling these land-use types is to create a spatial dataset for quantifying the built environment.  
The entropy index is fast becoming known and accepted as the most common method of quantifying land-use 
mix and diversity in global literature. For example, several studies have used it to quantify the degree of 
homogeneity or diversity of many land-uses, such as job and residential land-uses (Strauss & Miranda-Moreno, 
2013; Silva, 2014; Kockelman, 1997). The entropy index as modified for the land-use mix by (Zahabi et al., 
2012) is presented in Tab. 2. In the formulation (Eq.2 in Tab.2), !" = land-use mix entropy index; # = total 
number of land-uses of the two land-use categories; $1 = the job/commercial land-use category; $2 = the 
housing/residential land-use category; ' = the total number of land-uses in the mix (in this case 2). The field 
calculator module in ArcGIS 10.7.1 was employed for the computation of this spatial entropy index based on 
the Eq. 2 specification. The resulting value of the index varies between 0 and 1, where 0 depicts a homogenous 
land-use scenario (i.e. a single land-use) while 1 corresponds with a perfect mix scenario (i.e. all land-use 
categories are equally present). 

Street intersection density 
Street Intersection (SI) density index was used here as one of the indicators for defining the design dimension 
of the built environment. SI Density was measured in this study by computing a neighbourhood based four-
way street intersection points density. These points were extracted from the worldview satellite data and used 
to calculate the density of intersections per square kilometre of the respective neighbourhoods. The 
formulation developed to compute the SI Density index is presented in Eq.3 in Tab.2. In this specification, 
NoN = number of nodes (street intersection points in the neighbourhood); A = area of the neighbourhood in 
m2 (to convert to km2 the value of SI Density was multiplied by 1,000,000). By this, the SI Density index would 
be interpreted as the number of nodes per km2. By implication, neighbourhoods with a higher intersection 
density may promote more pedestrian travel (Reiff, 2003). The density of the intersection points would aid 
the characterisation of the neighbourhoods based on the level of grid design they are structured. A 
neighbourhood characterised by grid design tends to promote short distance travel and may also discourage 
transit mode of travel. The SI Density index was calculated in ArcGIS. Another design dimension is the 
presence of a sidewalk in the neighbourhood (Tab.2). 

Local sprawl 
Quantifying sprawl has been a long-time issue in global literature. The specification of robust indicators has 
played down the problem of measuring sprawl. The entropy statistic in its diverse modification has become a 
steady resource for quantifying urban sprawl (Bhatta et al., 2010; Sarvestani et al., 2011). However, the 
Shannon entropy index was computed to quantify and detect the local sprawl pattern by estimating the degree 
of concentration or dispersion of urban patches in the neighbourhoods. Shannon’s entropy statistic for 
measuring sprawl was calculated here with the formulation by Bhatta et al. (2010) in Eq. 4 in Tab. 2. The 
parameters are defined as (! = Shannon’s entropy index; )" = proportion of urban patches * in each 
neighbourhood; ' = Overall number of neighbourhoods in the study area. The index gives a value that varies 
from 0 to "'('). A value near 0 implies the compactness of patches while a value near "'(') indicates the 
dispersion of patches. Dispersion is interpreted as the occurrence of sprawl. 
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Distance to CBD 
Distance to CBD was defined as destination accessibility dimension using the average distance of the 
neighbourhood centroid to the CBD through a regular bus route or a major road in such a neighbourhood.  

Transit accessibility 
Transit accessibility was used to define the transit route density dimension and it measured the field data on 
the number of regular bus routes within the neighbourhood.  

3.5 Reclassification and rasterization of the indicators 
The 7 indicators which were used to quantify the BE of the Benin region were further analysed to understand 
the interactions and how such indicators collectively play out to define not only the BE but also the travel-
related prototypical neighbourhood. The essence of this is to advance knowledge on the travel outcome of the 
emerging BE. To achieve this, the indicators were rasterized (with a pixel size of 100x100) and using the raster 
calculator and reclassify tool in ArcGIS the indicators were systematically re-coded and classify into a common 
3 components measurement scale where 1 represent car-oriented neighbourhood, 2 represent transit-oriented 
neighbourhood, and 3 represent pedestrian-orientated development. The reclassification was done in such a 
way that the BE characteristics that trigger certain TB were classified accordingly.  
Neighbourhoods with high PD index values (ranging from 2,084.45-5,276.20) were classified as 1 (low density 
since the patches are less compacted); the neighbourhoods with PD index values ranging from 1091.16-
2,084.44 were classified as 2; while the neighbourhoods with PD index values ranging from 17.71-1,091.15 
were classified as 3. This approach was used to classify land-use index, SI density index, local sprawl index 
and distance to CBD index. Availability of sidewalk index has 2 categories 0 and 1. The neighbourhoods where 
sidewalks are present were classified 3, while others were classified 2. Neighbourhoods with transit accessibility 
index ranging from 2-7 were classified as 2 (high transit accessibility neighbourhoods); neighbourhoods with 
1 index value were classified as 1 (low transit accessibility); while neighbourhoods with 0 index value were 
classified as 3. The weighted overlay operation was performed on the reclassified indicator raster images with 
equal-weighted influence to produce an output raster. The weighted overlay analysis assigns the most unique 
code (i.e. the classification code of 1,2 or 3) to a neighbourhood and this is derived from the most significant 
class of all the indicators for such neighbourhood. 

4. Results and Discussion 
This section presents the various methods for extracting and measuring BE indicators to be used in defining 
the study region for TB study. To accomplish this, numerous land-use indexes were implemented, they include 
urban patch density index (density), local sprawl entropy index, land-use mix entropy index (diversity), street 
intersection density (design). Other BE variables that were presented in this section are the average distance 
of the neighbourhood to CBD (distance accessibility) and the number of regular bus routes in the 
neighbourhood (transit accessibility). 

4.1 Quantifying urban density 
To generate data for the PD index, an image classification was conducted using GIS and remote sensing 
techniques which were discussed in detail in the methodology section. Over 1 million urban built-up patches 
were extracted from the land-use section of the image classification. These patches were entered into ArcMap 
and using the patch analyst algorithm in the spatial metrics tool the PD index was computed. The result of the 
PD index is presented in Fig.3a. The PD index result (Fig.3a) is interpreted as the number of patches per km2. 
On the one hand, the lesser the value of the PD index, the denser the urban built-up area. It simply means 
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that the associated urbanised portion is more compacted. On the other hand, the higher the value of the PD 
index, the sparser the built-up area. By implication, a PD index of one (1) means that there is 100 per cent 
built-up or that the patch is one whole block within such neighbourhood.  
The result was displayed in a choropleth map using a natural breaks Jenks classification with 5-classes. As 
expected, the general pattern of PD (as revealed in Fig. 3a.) is that density reduces with increasing distance 
from the CBD. It shows that 14 neighbourhoods clustering contiguously in the core region (covering roughly 
71 km2) have a low PD index between 17-402 patches per km2.  
This means that the built-up patches are more aggregated. Hence, density is higher in these neighbourhoods. 
Among these neighbourhoods, Ugbekun has the highest density with the lowest PD index value of 17.71. 
However, the pattern of density spread was interrupted in Ewah, Ikpoba and Avbiama neighbourhoods. These 
neighbourhoods are where the Ikpoba River passes through which created a natural obstacle and slows down 
development.  
At the outskirt, 5 neighbourhoods manifest the highest PD index (3,219-5,276 patches per km2). By implication, 
they have the lowest urban concentration. These neighbourhoods are sparsely built-up and the closest to the 
King square/core region is over 10 km away. 

4.2 Measuring land-use mix 
Land-use mix was analysed with spatial entropy statistic which was modified to disaggregate the result of the 
entropy index values into neighbourhoods utilizing data from the 200m x 200m quadrat this consist of the 
number of housing and job location for the 55 neighbourhoods in the study area.  The result of the analysis 
(Fig. 3b) shows that 7 neighbourhoods returned high entropy index values greater than 0.71 indicating strong 
heterogeneousness of land-use. These neighbourhoods are Umelu (with an index value of 1.00); Iwogban 
(0.99); Aduwawa (0.99); Ugbekun (0.97); Evbuoriaria (0.97); Ogbeson (0.89); Ewah (0.78). There is only 1 
neighbourhood (Umelu) characterised by an entropy index equal to 1.00. It means that this neighbourhood’s 
land-use components are heterogeneous and are in a perfect mix. Figure 3b shows that King-Square and 31 
other neighbourhoods (such as Oghede/Obanyotor, Ugboikhiko, Urumwon, Egor, Idunwowina, Eyaen, 
Iyanomo, Evbuabogun, Ogua, etc.) returned entropy values less than 0.48, indicating that such 
neighbourhoods are characterised by homogenous land-use composition. This means that one land-use type 
is dominant in these neighbourhoods. The dominant land-use types for each neighbourhood is shown in Fig. 
4. However, the general pattern of the region’s land-use distribution is a complex mixture of residential and 
commercial land-uses which formed a cluster around the King-Square which in turn is defined by homogenous 
land-use characteristics. 
In the peripheral area, neighbourhoods with a single dominant land-use type formed patches around the 
heterogeneous land-use composition. One weakness of the entropy index is that it does not show the 
dominating land-use type in areas of the homogenous composition. To identify the dominant land-use type in 
each neighbourhood, the percentage values of the land-use types were plotted against the corresponding 
neighbourhoods (Fig.4). Fig.4 shows that King-Square is the only significant homogenous commercial land-
use-based neighbourhood.  
This is because it returned an entropy index value of 0.24 of which 85 per cent of the buildings are 
commercially based. This is not unexpected since it has become the commercial hub of the region over the 
years. Furthermore, 32 neighbourhoods that returned entropy index values less than 0.50 which is the mean 
of the index are homogenous residential. By implication, these neighbourhoods are classified as residential 
areas (see Fig.4).  
For planning and further explanation, the neighbourhood–based land-use diversity result was reclassified into 
groups based on entropy values. The first group are neighbourhoods that returned entropy values of 0.22–
0.30, these were named pure residential areas and pure commercial areas.  
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The second group are neighbourhoods that returned entropy values of 0.31-0.39, these were named largely 
residential. Thirdly, neighbourhoods that returned entropy values of 0.40-0.47 were named weakly mixed 
land-use. Fourthly, neighbourhoods that returned entropy value of 0.48-0.71 were named robust mixed land-
use and finally, those that returned entropy value of 0.72-1.00 were named complete mixed land-use.  

 
Fig.3 (a) is a patch density index (PD); (b) is a land-use mix entropy index; (c) is street intersection index (SI density), and 
(d) is the availability of sidewalk 
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Fig.4 Neighbourhood-level comparison of land-use types concerning entropy index 

4.3 Measuring SI Density index 
Design dimension was generated from two platforms-the first is a GPS-based field survey for capturing 
neighbourhoods with sidewalks, parking spaces and the second is the use of GIS techniques to compute a 
Street Intersection (SI) Density index. This section is specifically designed to focus on generating spatial data 
which was used to quantify the BE of the study region. Generally, 2,024 4-way street intersections were found 
in the region and this was used for the computation of indicators. The result of the SI Density index is 
presented in Fig.3c. The result shows that Ugbekun has the highest SI Density index value of 20.6, indicating 
that the neighbourhood is characterised by roughly 20 street intersections per km2. This is followed closely by 
the King-Square and Urubi with roughly 15 street intersections each per km2. However, neighbourhoods with 
a higher density of street intersections tend to cluster in the centroid of the region. The majority of the 
neighbourhoods at the edge of the city have a low SI Density index of between 0 and 5.29 intersections per 
km2. A Higher SI Density index means a higher level of grid design and this structure may encourage short 
distance travel and may discourage transit mode of travel. 

4.4 Availability of sidewalk 
Another indicator of the design dimension is the availability of sidewalks within the neighbourhood. The 
presence of a sidewalk in a neighbourhood is an urban design issue that encourages people to walk more 
often to their place of work. Fig.3d revealed a binary measure of the status of sidewalk availability within 
neighbourhoods of the region where 0 represent no sidewalk and 1 represent yes (i.e. the presence of 
sidewalk). Fig.3d shows that among the 55 neighbourhoods, 13 have sidewalks and the majority of these 
neighbourhoods formed a cluster at the central or core axis of the study region. However, 3 neighbourhoods 
seem to be detached from the cluster because they are closer to the edge of the city. These neighbourhoods 
are Egor, Ogba and Aduwawa. 

4.5 Distance to CBD 
The average distance of each neighbourhood to the CBD was used to define the destination accessibility 
dimension. Distance to CBD was measured using the average distance of the neighbourhood to the CBD 
through a regular bus route or a major road in such a neighbourhood. The respective distances were entered 
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into ArcGIS to generate a choropleth map of the region depicting the distance relationship of the adjacent 
neighbourhoods with CBD located in the King-Square neighbourhood (Fig.5a).  

 
Fig.5 (a) is distance accessibility index; (b) is transit accessibility index; (c) is the local sprawl entropy index, and (d) is the 
type of neighbourhood in the Benin region 
 
The general pattern is as expected–accessibility decreases with increasing distance from the CBD (the colour 
ramp in Fig.5a presents a clear visual explanation). Accessibility is lower in the peripheral areas, specifically 



Nkeki N. F., Asikhia M. O. - Quantifying the urban built environment: A neighbourhood-scale analysis 

 
204 - TeMA Journal of Land Use Mobility and Environment 2 (2021) 

the northwest, northeast and southeast parts of the region. This is because urban expansion is more rapid in 
these areas due to the influence of the high priority roads. 
The overall average distance in the region is 8.94 km and the maximum distance to the CBD is 16.4 km, the 
minimum distance to the CBD is 1.7 km. Ovbiogie has the maximum distance from the CBD while Adesogbe 
has the minimum distance. This means that Adesogbe is the most accessible neighbourhood (by bus route) 
from the CBD and Ovbiogie is the least accessible neighbourhood (by bus route) from the CBD. 9 
neighbourhoods returned the highest friction of distance from the CBD of over 13.1 km. These are depicted 
by the darkest shade in Fig.5a. For further computation, any neighbourhood whose distance from the CBD is 
higher than the regional average is interpreted as a neighbourhood with low accessibility while those with a 
distance lower than the regional average is interpreted as a neighbourhood with high accessibility. Low 
accessibility neighbourhoods may promote automobile usage. A custom filter result in Fig.5a revealed that 26 
of the 55 neighbourhoods are low accessibility areas. This is because their distance values are above the 
regional average of 8.94 km. Some of these neighbourhoods are Ovbiogie, Idokpa, Oluku, Iyanomo, 
Okhunmwum, Ikhuen-Niro, Iguosa, Obe, Ogua, etc. 

4.6 Transit accessibility  
Transit route density/accessibility dimension was measured with the number of regular bus routes within the 
neighbourhoods. King-Square has 7 regular bus routes indicating that accessibility is higher in this 
neighbourhood. This is followed by Adesogbe (with 4 bus routes) and Urubi (with 3 bus routes). Other 
neighbourhoods are either 2, 1 or 0 number of regular bus routes (Fig. 5b). King-Square, Adesogbe and Urubi 
are characterised by not less than 3 regular bus routes, indicating higher accessibility correspondingly are part 
of the highest accessible neighbourhoods from the CBD (Fig.5a). Ogua has the least level of accessibility. This 
is because there is no regular bus route in the neighbourhood and it has a friction of distance of over 13 km. 

4.7 Local sprawl  
Spatial Shannon’s entropy index for urban sprawl was used to empirically measure sprawl dimension in the 
study area and this was calculated at the neighbourhood level. The overall result of the computation is 
presented in Fig. 5c which is a choropleth map of the 5-class Jenks classification. The data used for the 
computation is the urban patch extracted from the classified World view image of the study region. 
The entropy index value for the sprawl measurement ranges from 0 to loge (n). Since the index was computed 
neighbourhood-wise and there are 55 neighbourhoods, then n = 55. Loge (55) therefore is 4.007. In this 
study, entropy values near 4.007 are interpreted as the occurrence of urban sprawl. Those near to 0 is 
interpreted as compactness (no sprawl). The result of the analysis shows that urban sprawl is stronger at the 
periphery specifically at the southwest, southeast and northeast part of the region. 9 neighbourhoods returned 
entropy values greater than 1.82. These are: Idokpa (3.69); Ikhuen-Niro (3.13); Oghede/Obanyotor (2.77); 
Idogbo (2.67); Obe (2.25); Eyaen (2.22); Iguomo (2.15); Iyanomo (2.15); and Ogua (2.12). Other 
neighbourhoods that returned entropy values greater than 1 (but less than 2) are: Iwogban (1.82); Obazagbon 
(1.81); Ogba (1.63); Ubagbon (1.60); Oluku (1.58); Avbiama (1.53); Ovbiogie (1.52); Amagba (1.50); Egor 
(1.46); Ekosodin (1.28); Egbean (1.25); Urumwon (1.22); Okhunmwum (1.06); and Evbomore (1.01). Among 
these, 5 neighbourhoods are located in the northwest while 2 are located in the northeast. 
These 23 neighbourhoods whose entropy index values are greater than 1 and nearer to 4.00 (loge (55)) reveals 
the occurrence of sprawl. Though, Idokpa and Ikhuen-Niro manifest stronger urban sprawl occurrence. 
Ugbekun returned the lowest entropy index values (0.007693) indicating that it is more compact than any 
other neighbourhood since it is closer to zero (0). This confirms the previous result regarding PD that Ugbekun 
has the highest urban density in the region. However, the sprawl index values were saved for further analysis 
as data for measuring the BE. 
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4.8 Defining travel-related prototypical neighbourhood 
Fig.5d depicts the result of the overlay analysis for defining the travel-related prototypical neighbourhoods. It 
shows that the quantifying of the BE of the region using 7 indicators, categorized BMR into 3 distinct 
prototypical neighbourhoods. 7 neighbourhoods in the inner cluster around the CBD formed the pedestrian-
oriented zone and 26 neighbourhoods that concentrically formed a cluster around the pedestrian zone were 
categorized into the transit-oriented zone while 22 neighbourhoods likewise that formed a cluster around the 
transit-oriented zone were categorized into the car-oriented zone. The car-oriented zone is formed at the edge 
of the city and the neighbourhoods of this zone are characterised essentially by low density, a high degree of 
sprawl, low transit accessibility, high distance accessibility, and low street intersection density. These BE 
characteristics promote high dependency on car use (Cho & Rodriguez, 2014; Nkeki & Asikhia, 2019) and it is 
clear in literature such a level of dependency on combustible modes of travel poses a significant threat to 
human well-being (Fenu, 2012). The inner zone is characterised by high urban density, high land-use mix, low 
sprawl magnitude, high transit and distance accessibility, and availability of sidewalks in most of its 
neighbourhoods. This inner zone classified as pedestrian-oriented manifest the BE characteristics that 
encourage people to walk (Kim & Brownstone, 2013). This is because trip length is significantly reduced and 
potential destinations are brought closer together within walkable distance. The zone in between the car-
oriented and pedestrian neighbourhood clusters is the transit-oriented zone. This zone is characterised by the 
BE indicators that promote transit mode of commuting and these are medium urban density, high land-use 
mix, medium street intersection density, medium distance and transit accessibility and medium-low degree off 
sprawl. The transit-oriented zone is a zone of intermediate level of BE indicators, especially those that favour 
transit performance. 

5. Conclusion  
In this study, the various indicators of the 6 dimensions of the BE in land-use-TB studies were modelled. These 
were used to quantify the BE of the Benin metropolitan region from the neighbourhood-scale perspective. This 
was achieved by implementing spatial metrics for measuring urban density, spatial entropy for quantifying 
sprawl and land-use mix, the index for quantifying urban design and other measurements of accessibility. The 
result shows that the urban density of the study region reduces with increasing distance from the core region. 
It was also discovered that 13 neighbourhoods, aggregately covering about 71 km2 which formed a cluster in 
the core region have the highest urban density. These neighbourhoods formed the pedestrian-oriented zone 
and part of the transit-oriented zone which is a prototypical neighbourhood design for transit and pedestrian 
mode of travel.  
The result of urban sprawl indicates that the region manifests urban sprawl characteristic which is stronger at 
the edge of the city specifically in the northeast, southwest and southeast part of the region. Fundamentally, 
the region is experiencing a dispersed and haphazard urban growth specifically taking place on the edge of 
the city and mostly along the corridor roads. Entropy statistics for land-use mix revealed that the general 
pattern of the region concerning land-use diversity is a complex mixture of residential and commercial land-
uses. This is largely influenced by the location of the King-Square because the mixed cluster is formed 
contiguously around the King-Square neighbourhood which is itself a homogenous land-use neighbourhood. 
In the peripheral area, neighbourhoods with a single dominant land-use type formed patches around the 
heterogeneous land-use composition. King-Square is the only homogenous commercial land-use 
neighbourhood in the region. However, based on entropy statistic results, 5 land-use categories (from the 
residential and commercial land-uses) were identified and these were named pure residential and pure 
commercial, largely residential, weakly mixed land-use and robust mixed land-use.  
The quantification of the SI Density index for urban design of BMR yielded a substantial result that seems to 
delineate the region into a cluster of neighbourhoods with high-density street intersections and a cluster of 
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neighbourhoods with a low-density street intersection. The former is located around the CBD and the latter is 
formed in the periphery, contiguously around the CBD. Expectantly, the general pattern of accessibility in the 
region is a decrease in accessibility with increasing distance from the CBD. The result of the indicators has a 
common characteristic. They were able to distinctively separate the core axis from the peripheral axis and a 
zone of transition was also formed between the core and periphery from the interaction of the indicators. This 
indicates that there is indeed a core-periphery relationship in the region. 

5.1 Policy and planning implication  

An important policy consideration from the global perspective is to encourage concentrated density and 
promote mixed land-use developments. This is well articulated in literature and is fast becoming a sustainable 
method of solving the problem of long commuting distance and time, reduce vehicular traffic congestion, and 
cut down fossil fuel usage. This policy tends to discourage sprawl and any other urban structure that may 
promote over-dependent on cars for personal travel. Most large cities have started to leverage functional 
transit systems such as light rail transit and bus rapid transit that can convey a large number of people to 
multiple destinations. BMR is yet to key into the policy plan. This characterises most cities in Africa. However, 
the result obtained in this work can inform policymakers and urban planners on the existing urban structure 
and neighbourhood characterisation for a comprehensive master plan and future transport demand 
optimisation and regulations. Since the methodology adopted here was able to quantify each neighbourhood 
and define their BE structure based on their relationship with TB. The 3 prototypical neighbourhoods that 
emerged from the result of the analysis is a sign of a robust method of quantifying the BE which seems to 
reveal the influence of tradition planning apparatus.  
Future planning and public policies for sustainable development must begin from the grassroots, such as 
neighbourhoods or communities. It is evident that from such a spatial entity, a development-oriented policy 
can be formulated specifically for different local areas. This is because peculiarity exists in different urban 
spaces, attempting to change these inherent local urban trails that have formed over a long time may be 
counter-productive. Hence, sustainable development can be achieved by implementing policies that would 
integrate properly into the urban fabric of concern. This understanding is key for a successful implementation 
of existing robust ideologies emerging from global scholars on travel and land-use. For example, there is a 
growing wishful concern for urban areas to be compact, activity-driven, accessible, mixed-use, transit-rich and 
pedestrian favourable, but this is yet to be achieved not only in the policies guiding Africa cities but also in 
large European cities (La Rocca, 2010). Several policy guidelines that show concern for the environment and 
urban liveability have been put forward. They include the integration of cycling into the transport policy (Fenu, 
2012; Masoumi et al., 2020); mass transit mobility using light rail transit (LRT) and bus rapid transit (BRT) for 
corridor areas (Zacharias, 2020); and increased walking for good health and fitness purposes.  
For these policies to be effectively implemented, urban governance must first be tailored towards 
understanding the complexity of the urban space and various interactions within. The approach put forward 
in this study would be of essential help to the policy and urban planners of BMR since it has identified local 
areas of need and the potential differential transport policy interventions that may be associated with 
neighbourhoods. For example, the delineated transit-oriented neighbourhoods can be improved by re-
designing the corridor roads to allow for BRT deployment. Policies that promote walking and cycling must be 
advocated in pedestrian-oriented neighbourhoods. Every road in this neighbourhood cluster (undermining the 
surfacing type) must be designed to be pedestrian-friendly by constructing sidewalks and cycling lanes along 
the roads. These public infrastructures would encourage a change in the travel behaviour of the commuters. 
There is an urgent need to reduce the number of car-oriented neighbourhoods in the region. This can be 
achieved by manipulating the neighbourhood BE to reduce sprawl development through edge city growth 
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restrictions or promoting self-contained suburban development. Alternatively, make these neighbourhoods 
transit-friendly by increasing transit accessibility. 
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