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Abstract 
The concentration of traffic-related air pollutants (TRAP) within transport microenvironments has become 
increasingly relevant in many megacities with high population density, intense traffic, and prolonged travel 
times. These conditions can intensify exposure to TRAP and exacerbate public health problems. However, 
TRAP concentrations in these microenvironments are changing due to the introduction of cleaner 
technologies. In this study, we compared the concentration of nanoparticles inside diesel, gas, and electric 
buses during their normal operation in Bogota, Colombia. We used a miniature diffusion size classifier 
(DiSCmini) to measure the nanoparticles' concentrations, average particle size, and lung-deposited surface 
area. Our results revealed significantly lower levels of this pollutant inside electric buses. Specifically, the 
concentration of nanoparticles per cubic centimeter was approximately 41% and 27% lower in electric 
buses compared to diesel and gas buses, respectively. Additionally, the lung-deposited surface area was 
also lower in electric buses. However, the average particle size in electric buses was 10% and 18% smaller 
compared to diesel and gas buses, respectively. The results of this study give useful information for future 
selection processes of bus technologies for public passenger transport in cities around the world; This 
research provides information that can be used in technical evaluation processes that link the possible 
health effects on commuters and impacts the environment. 
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How to cite item in APA format 
Vargas D., Galvis B., Durán V., Bernal C. (2023). Nanoparticles on electric, gas and diesel buses in mass 
transit buses of Bogotá Colombia. Tema. Journal of Land Use, Mobility and Environment, 16 (2), 367-381. 
http://dx.doi.org/10.6093/1970-9870/9907 

http://www.tema.unina.it/
https://orcid.org/0000-0001-9656-6428


Vargas D. et al. - Nanoparticles on electric, gas and diesel buses in mass transit buses of Bogotá Colombia 

 

 
368 - TeMA Journal of Land Use Mobility and Environment 2 (2023)  

1. Introduction  

Urban sprawl is recognized as a significant issue, particularly due to its negative impact on environmental 

sustainability, economic efficiency, and social implications (Hernandez, 2012). From a technical perspective, it 

leads to the consumption of rural land, reliance on automobiles, and increased carbon emissions. Additionally, 

it results in the abandonment of inner-city locations, underutilization of urban infrastructure, and the need for 

new infrastructure in peripheral areas. Mobility, as defined by the Larousse dictionary, refers to the property 

or characteristic of being capable of movement and changing place or function. It can also be seen as a 

concept that encompasses the practices of people moving to engage in specific activities (Ghédira & El Kébir, 

2022). 

In urban environments, air pollution has become a growing concern, particularly due to evidence of significant 

health impacts caused by previously accepted levels of air pollutant concentrations (Zargari & Khan, 2010). 

Among the various microenvironments in cities, mass transit areas may expose a larger number of city dwellers 

to higher concentrations of traffic-related air pollutants (TRAP) (de Nazelle et al., 2017; de Nazelle et al., 2012; 

Gurram et al., 2019; Hoffmann, 2019; Matz et al., 2019; Morales et al., 2017; Shekarrizfard et al., 2020; 

Spinazzé et al., 2015). Most mass transportation systems rely on buses, which can be classified as heavy-duty 

vehicles. Over the past decade, Euro VI and Euro V diesel buses equipped with diesel particulate filters (DPF), 

Compressed Natural Gas (CNG) powered buses, and battery electric vehicles (BEV) buses have become 

increasingly common in mass transit systems of many cities (Kholod & Evans, 2016; Morales et al., 2018; 

Wang et al., 2015). 

Heavy-duty vehicles significantly contribute to particulate matter emissions in many cities (Ali et al., 2019; 

Giechaskiel, 2018; Gireesh et al., 2021; Rodrigues et al., 2020; Winkler et al., 2018), with diesel engines being 

the primary emitters of ultrafine particles in urban areas (Bessagnet et al., 2022; Hudda et al., 2020; Kwon et 

al., 2020; Myung & Park, 2011). Natural gas vehicles may emit less soot and particulate matter by mass but 

potentially more particles by number (Bielaczyc et al., 2015; Chen et al., 2018; Distaso et al., 2020), which 

could have more significant health effects due to a larger surface area to mass ratio (Deng et al., 2019; 

Ohlwein et al., 2019; Schraufnagel, 2020). Although fewer studies have examined nanoparticles emitted by 

BEV vehicles, non-exhaust particulate matter from BEV vehicles could occasionally surpass particulate 

emissions from internal combustion engines (Beddows & Harrison, 2021; Liu et al., 2021; Zimakowska & 

Laskowski, 2022). The progressive electrification of vehicles in circulation presents a potential solution to 

address air pollution-related issues (Maternini et al., 2014). 

In Bogotá, a city with a population of over seven million residents, the mass transit system comprised 

approximately 9,400 buses by 2021, utilizing various technologies. Table 1 illustrates the evolution of bus 

technologies, highlighting a decrease in the number of buses with standards lower than EURO V and an 

increase in the number of buses employing less polluting technologies (see Table 1). Furthermore, in 2021, 

470 new battery electric vehicles (BEV) buses were introduced into operation, and it is anticipated that the 

city will have approximately 1,500 BEV buses by the end of 2022. 

Significant improvements were observed in the concentrations of fine particulate matter and black carbon 

within Bogotá's bus rapid transit (BRT) system, a segment of the city's mass transit system. These 

improvements, amounting to approximately 80%, were a result of the fleet upgrade that involved the 

deployment of diesel EURO V buses equipped with particulate filters and EURO VI compressed natural gas 

(CNG) buses (Morales et al., 2022). Primarily, the older EURO II/III buses were replaced during this fleet 

upgrade, potentially leading to a positive effect on reducing nanoparticle exposure levels. However, the 

measurements conducted did not include the BEV buses that commenced operations after January 2021. 

This research presents data obtained from measurements and analyzes the concentration, average size, and 

lung-deposited surface area of nanoparticles exposed within diesel, CNG, and BEV buses operating within the 

zonal component of Bogotá's mass transit system, during their regular operations. Furthermore, a comparison 
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is made to assess variations and determine whether differences in bus technology impact commuters' exposure 

to nanoparticles. 
 

Technology 2013 2015 2017 2020 2022 

< Euro IV 1,338 3,148 2,703 1,824 749 

Euro IV 138 983 964 972 986 

Euro V 125 2,369 2,666 2,656 3,327 

HYbrid  56 56 56 56 

Euro VI – CNG   3 2,498 1,490 

BEV   1 484 1,128 

Tab.1 Bogota’s mass transit fleet technology share 

2. Methods and data 

2.1 Study domain  

The mass transit system in Bogotá comprises two components: a Bus Rapid Transit (BRT) system and a zonal 

component. The BRT system operates articulated and bi-articulated buses on exclusive lanes, while single-

body buses are used to feed end-of-line stations on mixed traffic lanes (refer to Fig.1). The zonal component 

employs single-body buses and operates a mixture of diesel, compressed natural gas (CNG), hybrid (diesel-

BEV), and battery electric vehicle (BEV) buses mainly on mixed traffic lanes (refer to Fig.2). In this study, our 

focus was on measuring exposure inside diesel, CNG, and BEV buses of the zonal component operating on the 

Carrera 13 route, which runs from West to East and covers the localities of Fontibón, Kennedy, Puente Aranda, 

Los Mártires, Antonio Nariño, and Santa Fe (refer to Fig.3). The selected buses, lines, and their respective 

technologies, as well as some route characteristics, are presented in Tab.2. 

 

 
Fig.1 Buses used by the BRT component 

 

To collect the measurements, a person carried the instruments with the inlet nozzle positioned at the breathing 

zone and free from obstructions. The person consistently traveled at the back between the second and third 

doors of the buses (refer to Fig.2). This particular area receives the highest number of users and is closer to 

the engines. The data were recorded every 10 seconds. The measurement days were carefully chosen to 

represent average operating conditions and were limited to business days. We conducted measurements 

outside the hours of vehicular restrictions and during typical weather conditions for the city, avoiding periods 
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of heavy rainfall. Any days with atypical events such as protests or car-free days were excluded from the 

analysis. 

Inside single-body buses, measurements were taken for 80 passengers across all three technologies. It was 

verified that the tested diesel and CNG buses had no post-treatment or filter installed to control emissions. 

Tab.3 provides information on the tested bus characteristics (technology, standard, brand, last oil change on 

km) as well as details about the measurements (date, location, and route). 

 

 
Fig.2 Buses used on the zonal component 

 
 

 
Fig.3 Selected routes in Bogotá in Colombia 

 
 

Route Name Bus Technology 
Bus 

stops 
Origin Destination 

A302 – Centro BEV 62 Kr 123 - Cl 14 / Fontibon AC 19 – Kr 9 / Las Nieves 

99 – Germania Gas 64 Tv 80i – Dg 89 b South / Bosa AC 19 – Kr 4 / Las Nieves 

257 - Germania Diesel 37 Cl 17d – K135 / Fontibon AC 19 - Kr 5 / Veracruz 

Tab.2 Bus routes measured 

 

 

A302 – Centro 

257 - Germania 

99 – Germania 
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Bus 

Technology 
Standard Brand 

last oil 

change 

(km) 

Date of 

monitoring 
Location * Total rides * 

BEV BEV BYD 8.174 05/05/2021 E-W 1 

BEV BEV BYD 7.140 13/05/2021 E-W / W-E 2 

BEV BEV BYD 9.327 20/05/2021 E -W 1 

CNG Euro VI Volkswagen 11.320 07/05/2021 W-E 1 

CNG Euro VI Volkswagen 6.908 13/05/2021 E -W / W-E 2 

CNG Euro VI Volkswagen 12.730 21/05/2021 E -W 1 

Diesel Euro VI Volvo 4.600 20/05/2021 E -W / W-E 2 

Diesel Euro VI Volvo 5.230 25/05/2021 E -W / W-E 2 

Tab.3 Buses measured  /  * E: East / W: West 

2.2 Instruments  

We used the miniature diffusion size classifier - DiSCmini (Testo SE & Co. KGaA, Titisee-Neustadt, Germany) 

portable device to measure the number concentrations (# cm-3) of particles between 10 to 700 nm in size. 

The instrument also reports the mean nanoparticle diameter (nm), and the lung-deposited surface area 

(μm2.cm-3), with a frequency of 0.1 Hz. 

3. Results 

The measurements for BEV buses were conducted on four different dates, with three measurements in the 

West-to-East (W-O) direction and one measurement in the East-to-West (O-W) direction. In total, the 

measurements covered a duration of 177 minutes and a distance of 37.24 km. The average nanoparticle 

concentration was found to be 108,519.5 particles per cubic centimeter (#.cm-3), with a mean nanoparticle 

diameter of 35.2 nm and an average lung-deposited surface area of 191.6 μm2.cm-3. 
 

Bus technology BEV CNG DIESEL 

Total records 841 929 851 

Total buses 3 3 2 

Total routes 4 4 4 

Average nanoparticle concentration (#.cm-3) 109,773.0 124,075.6 175,000.5 

Max Nanoparticle Concentration(#.cm-3) 492,263 495,730 1,247,418 

Min Nanoparticle Concentration(#.cm-3) 13,556 18,590 14,526 

Average Nanoparticle Diameter (nm) 35.2 42.7 37.6 

Average Average Lung-Deposited Surface Area (μm2. cm-3) 195.0 281.5 349.6 

Tab.4 Summary of measurements and data 

 
For the Diesel buses, four measurements were conducted, with two measurements in the W-O direction and 

two measurements in the O-W direction. The total duration of these measurements was 225 minutes, covering 

a distance of 47.62 km. The average nanoparticle concentration for Diesel buses was 166,558.6 #.cm-3, with 

a mean nanoparticle diameter of 37.2 nm and an average lung-deposited surface area of 344.31 μm2.cm-3. 
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Similarly, the CNG buses were measured four times, with two measurements in the W-O direction and two 

measurements in the O-W direction. The total duration of these measurements was 233.4 minutes, covering 

a distance of 51.45 km. The average nanoparticle concentration for CNG buses was 142,920.8 #.cm-3, with a 

mean nanoparticle diameter of 42.39 nm and an average lung-deposited surface area of 318.5 μm2.cm-3. 

Tab.4 presents a summary of the measurements and data obtained for each bus technology, while Fig.4 

illustrates the nanoparticle concentrations for each bus technology on each route. 
 

 

Fig.4 Nanoparticle concentrations for Diesel, Gas and electric bus technologies 

Overall, these results provide important insights into the nanoparticle concentrations, nanoparticle diameter, 

and lung-deposited surface area associated with each bus technology. 

4. Discussion 

The findings of this study reveal important insights into the exposure concentrations of nanoparticles in 

different bus technologies. The results show that BEV buses exhibit lower nanoparticle concentrations 

compared to CNG and diesel buses (Tab.5). This finding is consistent with previous studies conducted in cities 

such as Arnhem, Netherlands, and Como, Italy, which have also reported higher UFP concentrations in diesel 

buses (Singh et al., 2016; Zuurbier et al., 2010). On the other hand, compressed natural gas buses and electric 

buses tend to have lower UFP concentrations (Ragettli et al., 2013; Morales et al., 2017; Knibbs et al., 2011). 
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These differences in nanoparticle concentrations can be attributed to the combustion characteristics and 

emissions profiles of each bus technology. 

The average nanoparticle diameter was found to be greater in CNG buses compared to diesel and BEV buses 

(Tab.5). This observation is consistent with the understanding that different combustion processes and fuel 

characteristics can influence the size distribution of nanoparticles emitted by vehicles. For example, the 

combustion of natural gas in CNG buses can result in the production of larger nanoparticles compared to diesel 

combustion (Singh et al., 2016). Additionally, factors such as the engine design and emission control systems 

can also contribute to variations in nanoparticle size among different bus technologies. 

Furthermore, the average lung-deposited surface area (LDSA) was lower in BEV buses compared to CNG and 

diesel buses (Tab.5). The LDSA is an important parameter that indicates the potential health impact of 

nanoparticles, as particles with larger surface areas have a greater potential for interaction with lung tissues. 

The lower LDSA observed in BEV buses suggests a potentially reduced health risk associated with nanoparticle 

exposure in these vehicles compared to CNG and diesel buses. However, it is important to note that other 

factors, such as the chemical composition and toxicity of the nanoparticles, should also be considered when 

assessing the health implications of nanoparticle exposure. 

The findings of this study align with previous research conducted in different cities around the world. For 

example, studies conducted in Arnhem, Netherlands, and Como, Italy, have reported higher UFP 

concentrations in diesel buses compared to electric and natural gas buses (Singh et al., 2016; Zuurbier et al., 

2010). Similarly, studies in Barcelona, Spain, and Beijing, China, have shown relatively low nanoparticle 

concentrations in electric buses (Moreno et al., 2015; Yang et al., 2021). These consistent findings across 

various cities indicate that the bus technology, along with other factors such as traffic conditions and urban 

air pollution levels, plays a significant role in determining nanoparticle exposure in public transportation 

systems. Also, the mode of transport, commuting route, and type of vehicles play influential roles in 

determining the levels of particulate matter exposure (Zuurbier et al., 2010). 

It is worth noting that the relationship between nanoparticle diameter, concentration, and LDSA is complex 

and not directly proportional. The results of this study demonstrate that nanoparticle count and LDSA exhibit 

a proportional relationship across the different bus technologies (Table 6). However, the nanoparticle diameter 

does not follow a consistent pattern. This highlights the need for a comprehensive understanding of the factors 

influencing nanoparticle characteristics and their potential health effects. However, nanoparticle count and 

lung-deposited surface area show a proportional relationship across the different bus technologies (refer to 

Figg. 5-7). 

Technology 

Average 

Nanoparticle 

concentration 

(#.cm-3) 

Average particle 

size 

(nm) 

Average lung-

deposited 

surface area 

(μm2. cm-3 ) 

BEV 108,519.4 35.2 191.6 

CNG 121,904.9 42.4 273.9 

Diesel 166,558.6 37.2 344.3 

Tab.5 Average results per bus technology 

 
 

Comparative 
Average number 

(#.cm-3) 

Average 

nanoparticle 

diameter 

(nm) 

Average lung-

deposited surface 

area 

(μm2. cm-3 ) 

BEV Vs Diesel -41% -10% -48% 

BEV Vs CNG -27% -18% -39% 

Tab.6 Comparison of the results per bus technology 
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Fig.5 Nanoparticle concentration vs lung-deposited surface area in BEV buses 

 

 
Fig.6 Nanoparticle concentration vs lung-deposited surface area in CNG buses 

 

 
Fig.7 Nanoparticle concentration vs lung-deposited surface area in Diesel buses 

 

The age of lubricating oil in diesel and CNG engines has been identified as a potential factor influencing 

nanoparticle concentrations (Singh et al., 2016). However, the results of this study did not show a clear direct 

proportionality between lubricating oil age and nanoparticle concentration per cubic centimeter for any of the 

bus technologies. This suggests that other factors, such as engine condition, maintenance practices, and 

driving conditions, may also contribute to the emission characteristics of nanoparticles in these buses. Further 

research is needed to explore the specific mechanisms and factors influencing nanoparticle emissions from 

different bus technologies.  
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While BEV buses generally exhibited lower nanoparticle concentrations on average, there were instances where 

the concentrations reached levels similar to CNG and diesel buses along the route. This variation can be 

attributed to factors beyond the bus technology itself, such as urban pollution, presence of other vehicles, and 

other local sources. Peaks in nanoparticle concentrations resulting from doors opening at bus stops indicate 

the influence of external factors on nanoparticle exposure. Similar findings have been reported in studies 

conducted in cities such as Barcelona and Beijing (Moreno et al., 2015; Yang et al., 2021). The "stop-start" 

nature of bus journeys and door openings can increase opportunities for air infiltration, even when windows 

are closed (Knibbs et al., 2011; Zuurbier et al., 2010). These findings emphasize the importance of considering 

external factors and localized conditions when assessing nanoparticle exposure in buses. 

 
Fig.8 Nanoparticle concentration, average particle size and lung deposited surface area Vs. operating speed in a) BEV, b) 

CNG, and c) Diesel buses 

 

The relationship between bus operating speed and nanoparticle characteristics was also investigated in this 

study (see Fig.8). Nanoparticle concentrations vs speed results indicate that there could be an optimal speed 

in to which less nanoparticles are emitted. Between 30 to 40 km/h there seems to be a reduction in 

nanoparticle concentration per cubic centimeter for BEV and CNG (Fig.ss 8 a1 and b1). For diesel buses a 

speed between 20 and 30 km/h seems to produce less particles (Fig.8 c1). Average particle size seems greater 

for CNG buses (Fig.8 b2) than for BEV or Diesel (Fig.ss 8 a2 and c2) but there is no evident dependency 

between size and speed. LDSA is much smaller inside BEV buses (Fig.8 c1) and between 30 to 40 km/h there 

seems be a reduction in LDSA for all technologies.  

The particle levels in buses in this study were higher than in other cities, including Basel, Switzerland, (17 days 

of measurements between December 2010 and September 2011. The city, located in the Rhine valley (260 m 

above sea level), has about 190,000 inhabitants and has average temperatures of 3 °C – 6 °C in winter, and 

21 °C–25 °C in summer. Residents primarily use public transport (52%), private car (18%), or bicycle (17%) 

for their daily commute to work), (Ragettli et al., 2013), Arnhem, Netherlands (capital of the province of 

Gelderland, located in the east of the Netherlands. Arnhem has about 150,803 inhabitants in 2014) (Singh et 

al., 2016) and, Beijing, China (capital of the Republic of China and one of the most populated cities in the 

world with 21,890,000 inhabitants in 2020, and dense traffic with more than 6 million vehicles) (Wang et al., 

2022), Barcelona, Spain (Spanish city, capital of the Community of Catalonia, with a population of 1,636,732 

a1) b1) c1)

a2) b2) c2)

a3) b3) c3)
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inhabitants in 2021, is the second most populous city in Spain, measurements were made between October 

and November 2014 for 39 working days, with only one day with rain) (Moreno et al., 2015) the proportion of 

the results was only similar to studies in Milan, Italy (almost 3 million inhabitants) (Cattaneo et al., 2009) and 

Santiago, Chile (capital and main city of Chile, with 5,614 million inhabitants in 2017, and approximately 5.98 

million registered vehicles) (Sirignano et al., 2018). The differences can result from many factors such as 

traffic conditions, bus technology, and urban air pollution concentration in the different cities, but also from 

bus ventilation (fans, air conditioning, open windows, and others). Comparisons with particle levels observed 

in other cities reveal variations influenced by multiple factors. The higher particle levels observed in this study 

compared to cities like Basel, Arnhem, Beijing, Barcelona, Milan, and Santiago can be attributed to differences 

in traffic conditions, bus technology, urban air pollution concentrations, and bus ventilation systems. These 

variations emphasize the importance of considering the specific context and local factors when assessing 

nanoparticle exposure levels. 

5. Conclusions 

This study provides valuable insights into the nanoparticle concentrations, sizes, and lung-deposited surface 

areas associated with different bus technologies. The findings support previous research indicating lower 

nanoparticle exposure in BEV buses compared to CNG and diesel buses. However, the complex relationship 

between nanoparticle characteristics, bus technology, and external factors highlights the need for further 

research to better understand and mitigate nanoparticle exposure in public transportation systems. Future 

studies should explore additional factors influencing nanoparticle emissions, such as engine conditions, 

maintenance practices, and driving conditions, to develop effective strategies for reducing particle exposure 

in buses. Furthermore, comprehensive assessments considering the chemical composition and toxicity of 

nanoparticles are necessary to fully evaluate the potential health impacts associated with nanoparticle 

exposure in different bus technologies. This study was the first to compare the exposure to traffic-related 

nanoparticles, inside three bus technologies: Diesel, CNG, and BEV, in Bogotá, a megacity in Colombia. 

The concentration of nanoparticles per cubic centimeter in BEV buses is 27% and 41% lower than in CNG and 

diesel buses, respectively (Navarro et al., 2021). This reduction in nanoparticle exposure is significant as it can 

contribute to reducing the risk of health effects such as respiratory tract irritation, increased susceptibility to 

respiratory infections, and exacerbation of symptoms in individuals with chronic diseases. Moreover, the 

average diameter of nanoparticles in BEV buses is 18% and 10% lower than in CNG and diesel buses, 

respectively. Additionally, the average lung-deposited surface area in BEV buses is 39% and 48% lower than 

in CNG and diesel buses. This reduction in lung-deposited surface area is crucial as nanoparticles with smaller 

sizes have a greater potential for entry into the bloodstream, potentially affecting diseases related to the 

circulatory system (Navarro et al., 2021). 

The analysis of the relationship between bus operating speed and nanoparticle characteristics shows that 

Diesel buses emit a greater number of particles per cubic centimeter and greater LDSA.whereas CNG buses 

have particles with grater average diameter. It also suggests that there could be an optimal operating speed 

to minimize number concentrations and LDSA for each bus technology and highlight the need for further 

investigation into the impact of operating speeds on nanoparticle characteristics. 

In Colombia, as in many other countries, land-use regulations are often under the jurisdiction of autonomous 

municipalities. However, local governance tends to prioritize issues directly related to citizens' aspirations, 

leaving strategic concerns such as environmental considerations at the trans-municipal level outside the 

priority agenda (Howell-Moroney, 2008). The rapid motorization of cities has resulted in significant changes in 

urban conditions and the nature of inner-city areas. Traditional centralities have faced challenges, while new 

forms of centrality have emerged along corridors and strips around avenues and highways, concentrating 
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various activities. This urban transformation, accompanied by sprawl and fragmentation, poses risks to 

environmental, economic, and social sustainability (Hernandez, 2012). 

The right to an adequate environment for health and well-being necessitates the integration of sustainability 

variables in all processes of technological advancement. Therefore, the selection processes of bus technologies 

for public passenger transport in urban contexts must consider not only financial and technical factors but also 

analyze potential health risks to users and other stakeholders, as well as conduct environmental impact 

assessments (Hernandez, 2012). The alarming levels of nanoparticle exposure observed in diesel buses in this 

study, along with their widespread use in many megacities, highlight the urgent need for policymakers to 

prioritize improving bus transportation systems by transitioning from diesel to cleaner power sources. 

Considering the characteristics of the population (more than 7 million inhabitants), vehicle density vehicles 

(more than 1,9 million additions to two-wheeled motorcycles), average travel distances, road infrastructure, 

and hourly demand for transport services, it is unlikely that travel times will decrease significantly in cities with 

similar characteristics. The observed reductions in nanoparticle concentrations with BEV buses can potentially 

decrease the health risks for users. This finding has important implications for public health policies and high-

impact projects in major cities (Navarro et al., 2021). 

Future studies should aim to confirm these results with new measurements conducted at different times of 

the year and under varied weather conditions. Comparative analyses should also be conducted to assess the 

performance of diesel, CNG, BEV, and other technologies for different types of buses, including small buses, 

articulated buses, and buses with more than two bodies. Additionally, research should be expanded to include 

private transport vehicles, taxis, trucks, and other possible applications such as delivery and last-mile 

transportation. 

Other variables such as temperature, sound, vibrations, and external factors like doors opening, windows, and 

stops in areas with high pollution levels should be analyzed to gain a comprehensive understanding of 

nanoparticle exposure in buses. Furthermore, including the perceptions of bus users in future research would 

provide valuable insights into their experiences and perspectives. 

The current global challenges, including climate change mitigation and reducing social inequalities, demand 

the integration of technological innovations into territorial contexts to foster the development of smart and 

sustainable cities. This requires the definition of strategies and concrete actions that support the evolution of 

urban and territorial systems, ultimately contributing to the achievement of the sustainable development goals 

(SDGs) outlined in the United Nations' 2030 agenda. 

The findings of this study provide valuable information for planners, decision-makers, and investors responsible 

for improving transportation systems and reducing social disparities through technological advancements. The 

comparative data on bus technologies presented in this study can serve as a decision-support tool when 

selecting the appropriate bus technology to prioritize the health and well-being of users. By leveraging natural 

resources and energy efficiency, transportation integration can become a platform for regional development, 

leading to the creation of wholesome, responsible, and sustainable cities that ensure a high quality of life for 

all populations. 

In conclusion, the measurement processes of the three bus technologies used in this study demonstrate that 

BEV buses exhibit a positive variation in nanoparticle exposure levels compared to CNG and diesel buses, 

contributing to improved health outcomes for transport system users. The findings emphasize the importance 

of incorporating sustainability considerations and health impact assessments into the decision-making 

processes surrounding bus technology selection and urban development. By aligning technological 

advancements with the goals of climate change mitigation and social equality, cities can pave the way for a 

more sustainable and resilient future. 
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