Chloroquine-Mediated Cell Death in Metastatic Pancreatic Adenocarcinoma Through Inhibition of Autophagy

  • Hermann B Frieboes Department of Bioengineering, University of Louisville. Louisville, KY, USA
  • Justin S Huang Department of Medicine; University of Louisville. Louisville, KY, USA
  • Wenyuan C Yin Department of Medicine; University of Louisville. Louisville, KY, USA
  • Lacey R McNally James Graham Brown Cancer Center, University of Louisville. Louisville, KY, USA
Keywords: Autophagy, Cell Hypoxia, Chloroquine, Neoplasm Metastasis, Pancreatic Neoplasms

Abstract

Context Cells in the interior of pancreatic tumors are believed to undergo continual autophagy to maintain homeostasis during unregulated growth in hypoxia caused by impaired vascularity. We hypothesize that treating metastatic cells with chloroquine, an inhibitor of autophagy, in hypoxia will decrease cell viability and induce cell death. Design MiaPaCa2 (non-metastatic) and S2VP10 (metastatic) cell lines were treated with 25 and 50 µM chloroquine for 24 and 48 hours in normoxia and hypoxia (5-10% O2). Viability was measured using ATPliteTM. After treatment, the cell stress was analyzed, and protein was lysed and quantified using the Bradford assay. Autophagy-associated protein levels were determined by Western blot. Results S2VP10 cells treated for 48 hours with 50 μM chloroquine in hypoxia had 24% viability compared to normoxia control, with loss of 10% viability caused by low O2 alone. MiaPaCa2 cells under these conditions had 60% viability compared to normoxia control, with loss of 25% viability caused by low O2 alone. Analysis of cell stress pathways and dosimetry of Western blot data suggest that chloroquine inhibits the autophagy pathway in the metastatic S2VP10 cells. Conclusion Autophagy blockage with chloroquine or similar-acting drugs may serve as a viable therapy for highly metastatic pancreatic cancers.

Image: MiaPaCa2 cells treated with 25 μM chloroquine for 24 hours (Figure 1e)

Downloads

Download data is not yet available.

References

Hezel AF, Kimmelman AC, Stanger B, Bardeesy N, DePinho RA. Genetics and biology of pancreatic ductal adenocarcinoma. Genes & Dev. 2006;20:1218–49. [PMID: 16702400]

American Cancer Society, Cancer Facts & Figures 2013. Atlanta: American Cancer Society; 2013. [http://www.cancer.org/research/cancerfactsfigures/cancerfactsfigures/cancer-facts-figures-2013]

Ahmad NA, Lewis JD, Ginsberg GG, Haller DG, Morris JB, Williams NN, et al. Long term survival after pancreatic resection for pancreatic adenocarcinoma. Am J Gastroenterol. 2001;96:2609–15. [PMID: 11569683]

van Geenen RC, van Gulik TM, Offerhaus GJ, de Wit LT, Busch OR, Obertop H, Gouma DJ.. Survival after pancreaticoduodenectomy for periampullary adenocarcinoma: an update. Eur J Surg Oncol. 2001;27:549–57. [PMID: 11520088]

Billingsley KG, Hur K, Henderson WG, Daley J, Khuri SF, Bell RH Jr. Outcome after pancreaticoduodenectomy for periampullary cancer: an analysis from the Veterans Affairs National Surgical Quality Improvement Program. J Gastrointest Surg. 2003;7:484–91. [PMID: 12763405]

Wray CJ, Ahmad SA, Matthews JB, Lowy AM. Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology 2005;128:1626–1641. [PMID: 15887155]

Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49. [PMID: 19474385]

Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463-77. [PMID: 15068787]

Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011;147:728-41. [PMID: 22078875]

White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 2009;15:5308-16. [PMID: 19706824]

Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer. Nat Rev Cancer 2007;7:961-7. [PMID: 17972889]

Jin S, White E. Tumor suppression by autophagy through the management of metabolic stress. Autophagy 2008;4:563-6. [PMID: 18326941]

Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006;10:51-64. [PMID: 16843265]

Karantza-Wadsworth V, Patel S, Kravchuk O, Chen G, Mathew R, Jin S, White E. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007;21:1621-35. [PMID: 17606641]

Jin S, DiPaola RS, Mathew R, White E. Metabolic catastrophe as a means to cancer cell death. J Cell Sci. 2007;120(Pt 3):379-83. [PMID: 17251378]

Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 2005;25:1025-40. [PMID: 15657430]

Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest. 2007;117:326-36. [PMID: 17235397]

Holzbeierlein JM, Windsperger A, Vielhauer G. Hsp90: a drug target? Curr Oncol Rep. 2010;12:95-101. [PMID: 20425593]

Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, Kinoshita T, et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci. 2008;99:1813-1819.

Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717-729. [PMID: 21406549]

Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981;90:665-9. [PMID: 6169733]

Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem. 2006;14:3218-22. [PMID: 16413786]

Jiang PD, Zhao YL, Deng XQ, Mao YQ, Shi W, Tang QQ, Li ZG, et al. Antitumor and antimetastatic activities of chloroquine diphosphate in a murine model of breast cancer. Biomed Pharmacother. 2010;64:609-14. [PMID: 20888174]

Yoon YH, Cho KS, Hwang JJ, Lee SJ, Choi JA, Koh JY. Induction of lysosomal dilatation, arrested autophagy, and cell death by chloroquine in cultured ARPE-19 cells. Invest Ophthalmol Vis Sci. 2010;51:6030-7. [PMID: 20574031]

Inoue S, Hasegawa K, Ito S, Wakamatsu K, Fujita K. Antimelanoma activity of chloroquine, an antimalarial agent with high affinity for melanin. Pigment Cell Res. 1993;6:354-8. [PMID: 8302774]

Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 2011;19:613-28. [PMID: 21575862]

Harhaji-Trajkovic L, Arsikin K, Kravic-Stevovic T, Petricevic S, Tovilovic G, Pantovic A, Zogovic N, et al. Chloroquine-mediated lysosomal dysfunction enhances the anticancer effect of nutrient deprivation. Pharm Res. 2012;29:2249-63. [PMID: 22538436]

Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A. Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy. 2012;8:200-212. [PMID: 22252008]

McNally LR, Welch DR, Beck BH, Stafford LJ, Long JW, Sellers JC, Huang ZQ, et al. KiSS1 over-expression in pancreatic adenocarcinoma in a xenograft mouse model. Clin Exp Metastasis 2010;27:591-600. [PMID: 20844932]

Suemizu H, Monnai M, Ohnishi Y, Ito M, Tamaoki N, Nakamura M. Identification of a key molecular regulator of liver metastasis in human pancreatic carcinoma using a novel quantitative model of metastasis in NOD/SCID/gammacnull (NOG) mice. Int J Oncol. 2007;31:741-751. [PMID: 17786304]

Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8:180-192. [PMID: 18273037]

Vitale G, Zappavigna S, Marra M, Dicitore A, Meschini S, Condello M, Arancia G, et al. The PPAR-γ agonist troglitazone antagonizes survival pathways induced by STAT-3 in recombinant interferon-β treated pancreatic cancer cells. Biotechnol Adv. 2012;30:169-184. [PMID: 21871555]

Rahim R, Strobl JS. Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells. Anticancer Drugs 2009;20:736-45. [PMID: 19584707]

Hu C, Solomon VR, Ulibarri G, Lee H. The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg Med Chem. 2008;16:7888-93. [PMID: 18691894]

Liang X, De Vera ME, Buchser WJ, Romo de Vivar Chavez A, Loughran P, Beer Stolz D, Basse P, et al. Inhibiting Autophagy During Interleukin 2 Immunotherapy Promotes Long Term Tumor Regression. Cancer Res 2012;72:2791-801. [PMID: 22472122]

Ouyang D, Zhang Y, Xu L, Li J, Zha Q, He X. Histone deacetylase inhibitor valproic acid sensitizes B16F10 melanoma cells to cucurbitacin B treatment. Acta Biochimica et Biophysica Sinica 2011;43:487-95. [PMID: 21628505]

MiaPaCa2 cells treated with 25 μM chloroquine for 24 hours (Figure 1e)
Published
2014-03-10
How to Cite
FrieboesH., HuangJ., YinW., & McNallyL. (2014). Chloroquine-Mediated Cell Death in Metastatic Pancreatic Adenocarcinoma Through Inhibition of Autophagy. JOP. Journal of the Pancreas, 15(2), 189-197. https://doi.org/10.6092/1590-8577/1900
Section
ORIGINAL ARTICLES