Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation

  • Joao A Paulo Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
  • Vivek Kadiyala Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital. Boston, MA, USA
  • Aleksandr Gaun Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
  • John F K Sauld Proteomics Center at Children’s Hospital Boston. Boston, MA, USA
  • Ali Ghoulidi Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
  • Peter A Banks Center for Pancreatic Disease, Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women’s Hospital. Boston, MA, USA
  • Hanno Steen Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
  • Darwin L Conwell Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
Keywords: Biological Markers, Chromatography, Liquid, Pancreas, Pancreatic Function Tests, Pancreatic Juice, Tandem Mass Spectrometry

Abstract

Context We have shown previously that trichloroacetic acid precipitation is an effective method of protein extraction from pancreatic fluid for downstream biomarker discovery, compared to other common extraction methods tested. Objective We aim to assess the utility of ultracentrifugation as an alternative method of protein extraction from pancreatic fluid. Design Proteins extracted from trichloroacetic acid- and ultracentrifugation-precipitated pancreatic fluid were identified using mass spectrometry techniques (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry; GeLC-MS/MS). Data were analyzed using Proteome Discoverer and Scaffold 3. Setting This is a proteomic analysis experiment of endoscopically collected fluid in an academic center. Patients The study population included adult patients referred to the Center for Pancreatic Disease at Brigham and Women’s Hospital, Boston, MA, USA for the evaluation of abdominal pain and gastrointestinal symptoms. Interventions Secretin-stimulated pancreatic fluid was collected as standard of care for the evaluation of abdominal pain and gastrointestinal symptoms. Main outcome measures We compared proteins identified via standard trichloroacetic acid precipitation and this alternative ultracentrifugation strategy. Results A subset of pancreatic fluid proteins was identified via the ultracentrifugation method. Of these proteins, similar numbers were obtained from fully tryptic or semi-tryptic database searching. Proteins identified in the ultracentrifugation-precipitated samples included previously identified biomarker candidates of chronic pancreatitis. Conclusions This alternative ultracentrifugation strategy requires less time and fewer handling procedures than standard trichloroacetic acid precipitation, at the expense of higher sample volume. As such, this method is well suited for targeted assays (i.e., dot blotting or targeted mass spectrometry) if the protein of interest is among those readily identified by ultracentrifugation-promoted precipitation.

Image: SDS-PAGE protein fractionation.

Downloads

Download data is not yet available.

Author Biography

Joao A Paulo, Department of Pathology, Children’s Hospital Boston and Harvard Medical School. Boston, MA, USA
Cell Biology; Instructor

References

M. Otsuki, Chronic pancreatitis in Japan: epidemiology, prognosis, diagnostic criteria, and future problems, J Gastroenterol, 38 (2003) 315-326.

D.C. Whitcomb, D. Yadav, S. Adam, R.H. Hawes, R.E. Brand, M.A. Anderson, M.E. Money, P.A. Banks, M.D. Bishop, J. Baillie, S. Sherman, J. DiSario, F.R. Burton, T.B. Gardner, S.T. Amann, A. Gelrud, S.K. Lo, M.T. DeMeo, W.M. Steinberg, M.L. Kochman, B. Etemad, C.E. Forsmark, B. Elinoff, J.B. Greer, M. O'Connell, J. Lamb, M.M. Barmada, Multicenter approach to recurrent acute and chronic pancreatitis in the United States: the North American Pancreatitis Study 2 (NAPS2), Pancreatology, 8 (2008) 520-531.

J.E. Dominguez Munoz, Diagnosis of chronic pancreatitis: Functional testing, Best Pract Res Clin Gastroenterol, 24 (2010) 233-241.

R. Chowdhury, M.S. Bhutani, G. Mishra, P.P. Toskes, C.E. Forsmark, Comparative analysis of direct pancreatic function testing versus morphological assessment by endoscopic ultrasonography for the evaluation of chronic unexplained abdominal pain of presumed pancreatic origin, Pancreas, 31 (2005) 63-68.

E.P. DiMagno, V.L. Go, W.H. Summerskill, Relations between pancreatic enzyme ouputs and malabsorption in severe pancreatic insufficiency, N Engl J Med, 288 (1973) 813-815.

J.A. Paulo, V. Kadiyala, P.A. Banks, H. Steen, D.L. Conwell, Mass spectrometry-based proteomics for translational research: a technical overview, The Yale journal of biology and medicine, 85 (2012) 59-73.

J.A. Paulo, L.S. Lee, B. Wu, P.A. Banks, H. Steen, D.L. Conwell, Mass spectrometry-based proteomics of endoscopically collected pancreatic fluid in chronic pancreatitis research, Proteomics Clin Appl, 5 (2011) 109-120.

J.A. Paulo, V. Kadiyala, L.S. Lee, P.A. Banks, D.L. Conwell, H. Steen, Proteomic Analysis (GeLC-MS/MS) of ePFT-Collected Pancreatic Fluid in Chronic Pancreatitis, J Proteome Res, (2012) 1897-1912.

J.A. Paulo, L.S. Lee, P.A. Banks, H. Steen, D.L. Conwell, Difference gel electrophoresis identifies differentially expressed proteins in endoscopically collected pancreatic fluid, Electrophoresis, 32 (2011) 1939-1951.

J.A. Paulo, L.S. Lee, B. Wu, K. Repas, K.J. Mortele, P.A. Banks, H. Steen, D.L. Conwell, Identification of pancreas-specific proteins in endoscopically (endoscopic pancreatic function test) collected pancreatic fluid with liquid chromatography--tandem mass spectrometry, Pancreas, 39 (2010) 889-896.

J.A. Paulo, L.S. Lee, B. Wu, K. Repas, P.A. Banks, D.L. Conwell, H. Steen, Optimized sample preparation of endoscopic collected pancreatic fluid for SDS-PAGE analysis, Electrophoresis, 31 (2010) 2377-2387.

A. Farina, J.M. Dumonceau, M. Delhaye, J.L. Frossard, A. Hadengue, D.F. Hochstrasser, P. Lescuyer, A step further in the analysis of human bile proteome, Journal of proteome research, 10 (2011) 2047-2063.

A. Farina, J.M. Dumonceau, J.L. Frossard, A. Hadengue, D.F. Hochstrasser, P. Lescuyer, Proteomic analysis of human bile from malignant biliary stenosis induced by pancreatic cancer, J Proteome Res, 8 (2009) 159-169.

T. Pisitkun, R.F. Shen, M.A. Knepper, Identification and proteomic profiling of exosomes in human urine, Proceedings of the National Academy of Sciences of the United States of America, 101 (2004) 13368-13373.

S. Mathivanan, R.J. Simpson, ExoCarta: A compendium of exosomal proteins and RNA, Proteomics, 9 (2009) 4997-5000.

S. Mathivanan, C.J. Fahner, G.E. Reid, R.J. Simpson, ExoCarta 2012: database of exosomal proteins, RNA and lipids, Nucleic acids research, 40 (2012) D1241-1244.

A.P. Diz, M. Truebano, D.O. Skibinski, The consequences of sample pooling in proteomics: an empirical study, Electrophoresis, 30 (2009) 2967-2975.

N.A. Karp, K.S. Lilley, Investigating sample pooling strategies for DIGE experiments to address biological variability, Proteomics, 9 (2009) 388-397.

T. Stevens, D. Conwell, G. Zuccaro, F. Van Lente, F. Khandwala, P. Hanaway, J.J. Vargo, J.A. Dumot, Analysis of pancreatic elastase-1 concentrations in duodenal aspirates from healthy subjects and patients with chronic pancreatitis, Dig Dis Sci, 49 (2004) 1405-1411.

T. Stevens, D.L. Conwell, G. Zuccaro, F. Van Lente, F. Khandwala, E. Purich, J.J. Vargo, S. Fein, J.A. Dumot, P. Trolli, C. O'Laughlin, Electrolyte composition of endoscopically collected duodenal drainage fluid after synthetic porcine secretin stimulation in healthy subjects, Gastrointestinal endoscopy, 60 (2004) 351-355.

B. Wu, D.L. Conwell, The endoscopic pancreatic function test, The American journal of gastroenterology, 104 (2009) 2381-2383.

C. Finnie, B. Svensson, Proteolysis during the isoelectric focusing step of two-dimensional gel electrophoresis may be a common problem, Anal Biochem, 311 (2002) 182-186.

J. Marshall, P. Kupchak, W. Zhu, J. Yantha, T. Vrees, S. Furesz, K. Jacks, C. Smith, I. Kireeva, R. Zhang, M. Takahashi, E. Stanton, G. Jackowski, Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction, J Proteome Res, 2 (2003) 361-372.

A.J. Rai, C.A. Gelfand, B.C. Haywood, D.J. Warunek, J. Yi, M.D. Schuchard, R.J. Mehigh, S.L. Cockrill, G.B. Scott, H. Tammen, P. Schulz-Knappe, D.W. Speicher, F. Vitzthum, B.B. Haab, G. Siest, D.W. Chan, HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples, Proteomics, 5 (2005) 3262-3277.

U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227 (1970) 680-685.

G. Neubauer, M. Mann, Mapping of phosphorylation sites of gel-isolated proteins by nanoelectrospray tandem mass spectrometry: potentials and limitations, Anal Chem, 71 (1999) 235-242.

H. Steen, B. Kuster, M. Fernandez, A. Pandey, M. Mann, Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode, Analytical chemistry, 73 (2001) 1440-1448.

G. Dennis, Jr., B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, R.A. Lempicki, DAVID: Database for Annotation, Visualization, and Integrated Discovery, Genome biology, 4 (2003) P3.

W. Huang da, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, 4 (2009) 44-57.

P.D. Thomas, A. Kejariwal, M.J. Campbell, H. Mi, K. Diemer, N. Guo, I. Ladunga, B. Ulitsky-Lazareva, A. Muruganujan, S. Rabkin, J.A. Vandergriff, O. Doremieux, PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification, Nucleic acids research, 31 (2003) 334-341.

A. Keller, A.I. Nesvizhskii, E. Kolker, R. Aebersold, Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search, Analytical chemistry, 74 (2002) 5383-5392.

A.I. Nesvizhskii, A. Keller, E. Kolker, R. Aebersold, A statistical model for identifying proteins by tandem mass spectrometry, Analytical chemistry, 75 (2003) 4646-4658.

J.E. Elias, F.D. Gibbons, O.D. King, F.P. Roth, S.P. Gygi, Intensity-based protein identification by machine learning from a library of tandem mass spectra, Nature biotechnology, 22 (2004) 214-219.

R.E. Moore, M.K. Young, T.D. Lee, Method for screening peptide fragment ion mass spectra prior to database searching, J Am Soc Mass Spectrom, 11 (2000) 422-426.

J. Paulo, A. Vaezzadeh, D. Conwell, R. Lee, H. Steen, Sample Handling of Body Fluids for Proteomics, in: A. Ivanov, A. Lazarev (Eds.) Sample Preparation in Biological Mass Spectrometry, Springer, New York, NY, 2011.

M. Chen, K. Wang, L. Zhang, C. Li, Y. Yang, The discovery of putative urine markers for the specific detection of prostate tumor by integrative mining of public genomic profiles, PLoS One, 6 (2011) e28552.

Z. Wang, S. Hill, J.M. Luther, D.L. Hachey, K.L. Schey, Proteomic analysis of urine exosomes by multidimensional protein identification technology (MudPIT), Proteomics, 12 (2012) 329-338.

J. Conde-Vancells, E. Rodriguez-Suarez, E. Gonzalez, A. Berisa, D. Gil, N. Embade, M. Valle, Z. Luka, F. Elortza, C. Wagner, S.C. Lu, J.M. Mato, M. Falcon-Perez, Candidate biomarkers in exosome-like vesicles purified from rat and mouse urine samples, Proteomics Clin Appl, 4 (2010) 416-425.

P.A. Gonzales, H. Zhou, T. Pisitkun, N.S. Wang, R.A. Star, M.A. Knepper, P.S. Yuen, Isolation and purification of exosomes in urine, Methods in molecular biology (Clifton, N.J, 641 (2010) 89-99.

M.A. Knepper, T. Pisitkun, Exosomes in urine: who would have thought...?, Kidney international, 72 (2007) 1043-1045.

S. Keller, C. Rupp, A. Stoeck, S. Runz, M. Fogel, S. Lugert, H.D. Hager, M.S. Abdel-Bakky, P. Gutwein, P. Altevogt, CD24 is a marker of exosomes secreted into urine and amniotic fluid, Kidney international, 72 (2007) 1095-1102.

D.L. Conwell, G. Zuccaro, Jr., J.J. Vargo, J.B. Morrow, N. Obuchowski, J.A. Dumot, P.A. Trolli, A. Burton, C. O'Laughlin, F. Van Lente, An endoscopic pancreatic function test with cholecystokinin-octapeptide for the diagnosis of chronic pancreatitis, Clin Gastroenterol Hepatol, 1 (2003) 189-194.

D.L. Conwell, G. Zuccaro, Jr., J.J. Vargo, P.A. Trolli, F. Vanlente, N. Obuchowski, J.A. Dumot, C. O'Laughlin, An endoscopic pancreatic function test with synthetic porcine secretin for the evaluation of chronic abdominal pain and suspected chronic pancreatitis, Gastrointestinal endoscopy, 57 (2003) 37-40.

D.L. Conwell, G. Zuccaro, J.B. Morrow, F. Van Lente, C. O'Laughlin, J.J. Vargo, J.A. Dumot, Analysis of duodenal drainage fluid after cholecystokinin (CCK) stimulation in healthy volunteers, Pancreas, 25 (2002) 350-354.

R. Chen, T.A. Brentnall, S. Pan, K. Cooke, K.W. Moyes, Z. Lane, D.A. Crispin, D.R. Goodlett, R. Aebersold, M.P. Bronner, Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer, Mol Cell Proteomics, 6 (2007) 1331-1342.

R. Chen, S. Pan, K. Cooke, K.W. Moyes, M.P. Bronner, D.R. Goodlett, R. Aebersold, T.A. Brentnall, Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis, Pancreas, 34 (2007) 70-79.

R. Chen, E.C. Yi, S. Donohoe, S. Pan, J. Eng, K. Cooke, D.A. Crispin, Z. Lane, D.R. Goodlett, M.P. Bronner, R. Aebersold, T.A. Brentnall, Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape, Gastroenterology, 129 (2005) 1187-1197.

Y. Cui, M. Tian, M. Zong, M. Teng, Y. Chen, J. Lu, J. Jiang, X. Liu, J. Han, Proteomic Analysis of Pancreatic Ductal Adenocarcinoma Compared with Normal Adjacent Pancreatic Tissue and Pancreatic Benign Cystadenoma, Pancreatology, 9 (2008) 89-98.

M. Gronborg, J. Bunkenborg, T.Z. Kristiansen, O.N. Jensen, C.J. Yeo, R.H. Hruban, A. Maitra, M.G. Goggins, A. Pandey, Comprehensive proteomic analysis of human pancreatic juice, Journal of proteome research, 3 (2004) 1042-1055.

M. Gronborg, T.Z. Kristiansen, A. Iwahori, R. Chang, R. Reddy, N. Sato, H. Molina, O.N. Jensen, R.H. Hruban, M.G. Goggins, A. Maitra, A. Pandey, Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach, Mol Cell Proteomics, 5 (2006) 157-171.

E. Ke, B.B. Patel, T. Liu, X.M. Li, O. Haluszka, J.P. Hoffman, H. Ehya, N.A. Young, J.C. Watson, D.S. Weinberg, M.T. Nguyen, S.J. Cohen, N.J. Meropol, S. Litwin, J.L. Tokar, A.T. Yeung, Proteomic Analyses of Pancreatic Cyst Fluids, Pancreas, 38 (2009) 33-42.

C. Li, D.M. Simeone, D.E. Brenner, M.A. Anderson, K.A. Shedden, M.T. Ruffin, D.M. Lubman, Pancreatic Cancer Serum Detection Using a Lectin/Glyco-Antibody Array Method, J Proteome Res, 8 (2008) 483-492.

Y. Zhao, W.N. Lee, S. Lim, V.L. Go, J. Xiao, R. Cao, H. Zhang, R.R. Recker, G.G. Xiao, Quantitative proteomics: measuring protein synthesis using 15N amino acid labeling in pancreatic cancer cells, Analytical chemistry, 81 (2009) 764-771.

C. Doyle, K. Yancey, H. Pitt, M. Wang, K. Bemis, M. Yip-Schneider, S. Sherman, K. Lillemoe, M. Goggins, C. Schmidt, The proteome of normal pancreatic juice, Pancreas, 41 (2012) 186-194.

R.J. Simpson, J.W. Lim, R.L. Moritz, S. Mathivanan, Exosomes: proteomic insights and diagnostic potential, Expert Rev Proteomics, 6 (2009) 267-283.

S. Keller, M.P. Sanderson, A. Stoeck, P. Altevogt, Exosomes: from biogenesis and secretion to biological function, Immunol Lett, 107 (2006) 102-108.

R. Grant, E. Ansa-Addo, D. Stratton, S. Antwi-Baffour, S. Jorfi, S. Kholia, L. Krige, S. Lange, J. Inal, A filtration-based protocol to isolate human plasma membrane-derived vesicles and exosomes from blood plasma, J Immunol Methods, 371 (2011) 143-151.

Q.L. Li, N. Bu, Y.C. Yu, W. Hua, X.Y. Xin, Exvivo experiments of human ovarian cancer ascites-derived exosomes presented by dendritic cells derived from umbilical cord blood for immunotherapy treatment, Clinical medicine. Oncology, 2 (2008) 461-467.

M.P. Caby, D. Lankar, C. Vincendeau-Scherrer, G. Raposo, C. Bonnerot, Exosomal-like vesicles are present in human blood plasma, Int Immunol, 17 (2005) 879-887.

M.J. Rindler, Isolation of zymogen granules from rat pancreas, Curr Protoc Cell Biol, Chapter 3 (2006) Unit 3 18.

R.C. De Lisle, I. Schulz, T. Tyrakowski, W. Haase, U. Hopfer, Isolation of stable pancreatic zymogen granules, Am J Physiol, 246 (1984) G411-418.

M.R. Paquet, P. St-Jean, M. Roberge, A.R. Beaudoin, Isolation of zymogen granules from rat pancreas and characterization of their membrane proteins, European journal of cell biology, 28 (1982) 20-26.

X. Chen, A.K. Walker, J.R. Strahler, E.S. Simon, S.L. Tomanicek-Volk, B.B. Nelson, M.C. Hurley, S.A. Ernst, J.A. Williams, P.C. Andrews, Organellar proteomics: analysis of pancreatic zymogen granule membranes, Mol Cell Proteomics, 5 (2006) 306-312.

M. Swamy, G.M. Siegers, S. Minguet, B. Wollscheid, W.W. Schamel, Blue native polyacrylamide gel electrophoresis (BN-PAGE) for the identification and analysis of multiprotein complexes, Sci STKE, 2006 (2006) pl4.

SDS-PAGE protein fractionation
Published
2013-03-10
How to Cite
PauloJ., KadiyalaV., GaunA., SauldJ., GhoulidiA., BanksP., SteenH., & ConwellD. (2013). Analysis of Endoscopic Pancreatic Function Test (ePFT)-Collected Pancreatic Fluid Proteins Precipitated Via Ultracentrifugation. JOP. Journal of the Pancreas, 14(2), 176-186. https://doi.org/10.6092/1590-8577/1272
Section
ORIGINAL ARTICLES