Unveiling shoreline dynamics and remarkable accretion rates in Lake Eğirdir (Turkey) using DSAS. The implications of climate change on lakes

Keywords: Lakes, Shoreline monitoring, Climate Change, DSAS, Accretion

Abstract

Lakes and their shorelines are important ecosystem areas with the diversity of living species they host. In addition, lakes are an almost indispensable resource for humans as a source of fresh water. Global climate change causes changes in lake surface conditions such as ice cover, surface temperature, evaporation, and water level. To understand the vulnerability of lakes to global climate change, researchers study the temporal rates of change that occur on lake shorelines. Shoreline monitoring contributes to important steps such as lake shoreline management, shoreline change, erosion monitoring, flood forecasting, and water resource assessment. Therefore, in this study, Landsat ETM+ multi-temporal images of the east part of Isparta Eğirdir Lake were obtained and the change in the shoreline over a 10-year period (2013-2022) was examined using the DSAS (Digital Shoreline Analysis System) tool. As a result of the study, very high levels of accretion were observed in the entire 82 km area examined in Eğirdir Lake. The highest EPR (53.79 m/year) in transect ID 149 and the highest LRR (60.87 m/year) in transect ID 26 were observed. These values are well above the +2m/year EPR (End Point Rate) and LRR (Linear Regression Rate) values, which means very high accretion.

Downloads

Download data is not yet available.

Author Biography

Gizem Dinç, Landscape Architecture Department, Süleyman Demirel University

Gizem Dinç completed her M.Sc. degree at Ankara University, Department of Landscape Architecture in 2017. After, she started her career as a research assistant at Süleyman Demirel University, Turkey. In 2021, she did an academic internship at the Federico II University of Naples, Italy. She completed her Ph.D. degree at Süleyman Demirel University, Department of Landscape Architecture in 2002 and continues to work in this department. Her research interests are landscape planning and design, land use/land cover, urban design, walkability, and public spaces.

References

Adams, K.D., & Minor, T.B. (2002). Historic shoreline change at Lake Tahoe from 1938 to 1998 and its impact on sediment and nutrient loading. Journal of coastal research, 18 (4), 637-651.

Aksoy, T., Sari, S., & Çabuk, A. (2019). Determination of Water Index by Remote Sensing within the Scope of Wetlands Management, Lakes Region. GSI Journals Serie B: Advancements in Business and Economics, 1 (2), 35-48.

Alp, H., Akliman, S., Hayırlı, Ç., Turan, T., Köse, Y., & İlke, E.F., (2020). Eğirdir Basin Landscape Character Analysis. In A. Gül, Ş. Şahin (Eds.). Isparta - Academic Vision for Spatial Planning and Design Specific to Isparta-Eğirdir, 1-36, Ankara: Astana Yayınları.

Balletto, G., Sinatra, M., Mura, R., & Borruso, G. (2022). Climate variation in metropolitan cities. TeMA - Journal of Land Use, Mobility and Environment, 15 (3), 501-516. https://doi.org/10.6093/1970-9870/9265

Beltramino, S., Scalas, M., Castro Rodriguez, D., Brunetta, G., Pellerey, F., Demichela, M., Voghera, A., Longhi, A., Mutani, G., Caldarice, O., Miraglia, G., Lenticchia, E., & La Riccia, L. (2022). Assessing territorial vulnerability. TeMA - Journal of Land Use, Mobility and Environment, 15 (3), 355-375. https://doi.org/10.6093/1970-9870/9069

Burningham, H., & Fernandez-Nunez, M. (2020). Shoreline change analysis. In D. Jackson, & A. Short (Eds.). Sandy Beach Morphodynamics Form and Process, 439-460. Leiden, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-08-102927-5.00019-9

Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic, M., Bisselink, B., Pekel, J.-F., & Cottam, A. (2019). A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry. Hydrology and Earth System Sciences, 23, 669-690. https://doi.org/10.5194/hess-23-669-2019

Chieffallo, L., Palermo, A. & Viapiana, M.F. (2022). The Structural Plan’s sustainability in coastal areas. A case study in the Tyrrhenian coast of Calabria. Tema - Journal of Land Use, Mobility and Environment, 15 (2), 209-226. http://dx.doi.org/10.6093/1970-9870/8891

Davranche, A., Lefebvre, G., & Poulin, B. (2010). Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sensing of Environment, 114 (3), 552-562. https://doi.org/10.1016/j.rse.2009.10.009

Dinç, G., & Gül, A. (2021). Estimation of the future land cover using Corine Land Cover data. TeMA - Journal of Land Use, Mobility and Environment, 14 (2), 177-188. https://doi.org/10.6093/1970-9870/7671

Dönmez, S. (2018). Investigation of the recession of the Akşehir Lake water level with meteorological and satellite data. Journal of Gazi University Faculty of Engineering and Architecture, 33 (1), https://doi.org/10.17341/gazimmfd.406790

Duan, Z., & Bastiaanssen, W.G.M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403-416. https://doi.org/10.1016/j.rse.2013.03.010

European Parliament and Council (2000). Water Framework Directive. Retrieved from: https://environment.ec.europa.eu/topics/water/water-framework-directive_en. (Accessed: April 1, 2023).

Feyisa, G.L., Meilby, H., Fensholt, R., & Proud, S.R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23-35. https://doi.org/10.1016/j.rse.2013.08.029

Frey, H., Huggel, C., Paul, F., & Haeberli, W. (2010). Automated detection of glacier lakes based on remote sensing in view of assessing associated hazard potentials. Grazer Schriften der Geographie und Raumforschung, 45, 261-272.

Giardino, C., Bresciani, M., Villa, P., & Martinelli, A. (2010). Application of remote sensing in water resource management: the case study of Lake Trasimeno, Italy. Water resources management, 24, 3885-3899. https://doi.org/10.1007/s11269-010-9639-3

Hegerl, G.C., Black, E., Allan, R.P., Ingram, W.J., Polson, D., Trenberth, K. E., & al. (2015). Challenges in quantifying changes in the global water cycle. Bulletin of the American Meteorological Society, 96 (7), 1097-1115. https://doi.org/10.1175/BAMS-D-13-00212.1

Held, I.M., & Soden, B.J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19 (21), 5686-5699. https://doi.org/10.1175/JCLI3990.1

Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., & Farris, A.S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. Open-File Report 2018-1179. https://doi.org/10.3133/ofr20181179

Hürriyet, (2020). 60 yılda 70'e yakın göl kurudu. October 5. Retrieved from: https://www.hurriyet.com.tr/seyahat/60-yilda-70e-yakin-gol-kurudu-41628196. (Accessed: April 10, 2023).

Ji, L., Zhang, L., & Wylie, B. (2009). Analysis of dynamic thresholds for the normalized difference water index. Photogrammetric Engineering and Remote Sensing, 75 (11), 1307-1317. https://doi.org/10.14358/PERS.75.11.1307

Keskin, M.E., Taylan, E.D., & Aslanbaş, T. (2015). Possible decreasing trends in Egirdir and Burdur Lakes water levels. 4th Water Structures Symposium. 19-21 November, 489-499, Antalya.

Kilibarda, Z., & Shillinglaw, C. (2015). A 70-year history of coastal dune migration and beach erosion along the southern shore of Lake Michigan. Aeolian Research, 17, 263-273. https://doi.org/10.1016/j.aeolia.2014.09.002

Kuleli, T., Guneroglu, A., Karsli, F., & Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38 (10), 1141-1149. https://doi.org/10.1016/j.oceaneng.2011.05.006

Külköylüoğlu, O., Yağcı, A., Erbatur, İ., Yağcı, M.A., Bulut, C., & Çınar, Ş. (2023). Effects of water quality changes on the Ostracoda (Crustacea) species diversity and seasonal occurrence patterns in Lake Eğirdir (Isparta, Turkey). Biologia, 78 (3), 755-769. https://doi.org/10.1007/s11756-022-01267-5

Kurniawan, I.A., & Marfai, M.A. (2020). Shoreline changes analysis of Kendal Coastal Area. IOP Conference Series: Earth and Environmental Science, 451, 012056. https://doi.org/10.1088/1755-1315/451/1/012056

Li, R., Liu, J.-K., Felus, Y. (2001). Spatial modeling and analysis for shoreline change detection and coastal erosion monitoring. Marine Geodesy, 24 (1), 1-12. https://doi.org/10.1080/01490410151079891

Lu, S., Wu, B., Yan, N., & Wang, H. (2011). Water body mapping method with HJ-1A/B satellite imagery. International Journal of Applied Earth Observation and Geoinformation, 13 (3), 428-434. https://doi.org/10.1016/j.jag.2010.09.006

Ma, R., Duan, H., Hu, C., Feng, X., Li, A., Ju, W., Jiang, J., & Yang, G. (2010). A half-century of changes in China’s lakes: Global warming or human influence? Geophysical Research Letters, 37 (24), L24106. https://doi.org/10.1029/2010GL045514

Mazzeo, G. (2020). Domitian Coast. Rehabilitation’outlooks of the Northern coast of Campania. In L. Bonora, D. Carboni, M. De Vincenzi (Eds.), Eighth International Symposium “Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques”, June, 270-279, Livorno, Italy. https://doi.org/10.36253/978-88-5518-147-1.27

Moore, L.J. (2000). Shoreline mapping techniques. Journal of Coastal Research, 16 (1), 111-124. https://www.jstor.org/stable/4300016

Mutaqin, B. W. (2017). Shoreline changes analysis in Kuwaru coastal area, Yogyakarta, Indonesia: an application of the Digital Shoreline Analysis System (DSAS). International Journal of Sustainable Development and Planning, 12 (7), 1203-1214. https://doi.org/10.2495/SDP-V12-N7-1203-1214

Nassar, K., Mahmod, W.E., Fath, H., Masria, A., Nadaoka, K., & Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37 (1), 81-95. https://doi.org/10.1080/1064119X.2018.1448912

Notaro, M., Bennington, V. & Lofgren, B. (2015). Dynamical Downscaling–Based Projections of Great Lakes Water Levels. Journal of Climate, 28, 9721-9745. https://doi.org/10.1175/JCLI-D-14-00847.1

Ouma, Y.O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: an empirical analysis using Landsat TM and ETM+ data. International Journal of Remote Sensing, 27 (15), 3153-3181. https://doi.org/10.1080/01431160500309934

Pardo-Pascual, J.E., Almonacid-Caballer, J., Ruiz, L.A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. https://doi.org/10.1016/j.rse.2012.02.024

Pekel, J.F., Cottam, A., Gorelick, N., & Belward, A.S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540 (7633), 418-422. https://doi.org/10.1038/nature20584

Poulin, B., Davranche, A., & Lefebvre, G. (2010). Ecological assessment of Phragmites australis wetlands using multi-season SPOT-5 scenes. Remote Sensing of Environment, 114 (7), 1602-1609. https://doi.org/10.1016/j.rse.2010.02.014

Rodell, M., Famiglietti, J.S., Wiese, D.N., Reager, J.T., Beaudoing, H.K., Landerer, F.W., & Lo, M.H. (2018). Emerging trends in global freshwater availability. Nature, 557 (7707), 651-659. https://doi.org/10.1038/s41586-018-0123-1

Sarp, G., & Ozcelik, M. (2017). Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. Journal of Taibah University for Science, 11 (3), 381-391. https://doi.org/10.1016/j.jtusci.2016.04.005

Şener, Ş., Davraz, A., & Karagüzel, R. (2013). Evaluating the anthropogenic and geologic impacts on water quality of the Eğirdir Lake, Turkey. Environmental Earth Sciences, 70, 2527-2544. https://doi.org/10.1007/s12665-013-2296-0

Singh, S., Solanki, H., & Prakash, I. (2022). Shoreline Change Analysis Using Digital Shoreline Analysis System (DSAS) in the Coastal Area of Jambusar, Gujarat, India. Acta Scientific Environmental Science, 1 (1).

Smith, J. B. (1991). The potential impacts of climate change on the Great Lakes. Bulletin of the American Meteorological Society, 72 (1), 21-28. https://doi.org/10.1175/1520-0477(1991)072<0021:TPIOCC>2.0.CO;2

Special Provisions of Lake Eğirdir. (2012, June 16). Isparta Local Newspaper. Retrieved from: https://www.tarimorman.gov.tr/SYGM/Belgeler/%C4%B0%C3%87ME%20SUYU%20KORUMA%20PLANLARI%2028.12.2022/E%C4%9Firdir%20G%C3%B6l%C3%BC%20%C3%96zel%20H%C3%BCk%C3%BCmleri.pdf (Accessed: March 20, 2023).

Taş, M.A. & Akpınar, E. (2021). Detection of level changes in lakes in the Burdur basin with geographic information systems (GIS) and remote sensing (RS). Eastern Geographical Review, 26 (46), 37-54. https://doi.org/10.17295/ataunidcd.984268

Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., & Ergul, A. (2009). The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change. Report 2008-1278. US Geological Survey. https://doi.org/10.3133/ofr20081278

Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., Miller, T.L. (2005). Digital Shoreline Analysis System (DSAS) version 3.0: an ArcGIS extension for calculating shoreline change. Report 2005-1304. US Geological Survey. https://doi.org/10.3133/ofr20051304

Uysal, F. (2018). Göller Yöresinin Tarihi Coğrafyası. Selçuk Üniversitesi (Yüksek Lisans Tezi). Erişim Adresi. Retrieved from: https://tez.yok.gov.tr/UlusalTezMerkezi/. (Accessed: March 17, 2023).

Wang, J., Song, C., Reager, J.T., Yao, F., Famiglietti, J.S., Sheng, Y., MacDonald, G.M., Brun, F., Müller Schmied, H., Marston, R.A., & Wada, Y. (2018). Recent global decline in endorheic basin water storages. Nature geoscience, 11 (12), 926-932. https://doi.org/10.1038/s41561-018-0265-7

Watras, C.J., Read, J.S., Holman, K.D., Liu, Z., Song, Y.Y., Watras, A.J., Morgan, S., & Stanley, E. H. (2014). Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: Hydroclimatic implications. Geophysical Research Letters, 41 (2), 456-462. https://doi.org/10.1002/2013GL058679

Woods Hole Coastal and Marine Science Center (2022, December 6). Digital Shoreline Analysis System (DSAS) active. Digital Shoreline Analysis System (DSAS). U.S. Geological Survey. Retrieved from: https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-dsas. (Accessed: April 7, 2023).

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., & Sharma, S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1 (8), 388-403. https://doi.org/10.1038/s43017-020-0067-5

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27 (14), 3025-3033. https://doi.org/10.1080/01431160600589179

Published
2023-11-30
How to Cite
DinçG. (2023). Unveiling shoreline dynamics and remarkable accretion rates in Lake Eğirdir (Turkey) using DSAS. The implications of climate change on lakes. TeMA - Journal of Land Use, Mobility and Environment, (2), 95-108. https://doi.org/10.6093/1970-9870/10111
Section
Burn or sink. Planning and managing the land