Land surface temperature and land cover dynamics. A study related to Sardinia, Italy
Abstract
This study aims at analyzing analogies and differences between the spatial relations regarding land surface temperature (LST) and land covers in May and August 2019. Land cover data are drawn from the most updated spatial datasets available from Copernicus, while LST is retrieved from Landsat 8 satellite images made available by the U.S. Geological Survey. The methodology couples GIS spatial analysis and regression analysis; the latter is used to implement spatial inferential analysis as regards LST. Moreover, on the basis of a “what if” assessment, the impact of future afforestation, as regards rural areas, is detected with respect to decrease in LST, building on the outcomes of the model which relates LST to land cover types. The Sardinian region is taken as case study because its climate homogeneity and its self-containment allow for a pretty straightforward identification of the regional boundaries. The correlation between the spatial distribution of LST and land cover reveals, in the two time periods, that urbanization and the spatial dynamics of heating phenomena are closely connected. The methodology can be easily implemented in other regional contexts, and comparison of analogies and differences are quite effective and useful in identifying stylized facts and policy implications.
Downloads
References
Akinyemi, F.O, Ikanyeng, M., & Muro, J. (2019). Land cover change effects on land surface temperature trends in an African urbanizing dryland region. City and Environment Interactions, 4 (100029), 10 pp. https://doi.org/10.1016/j.cacint.2020.100029
Al Kafy, A., Rahman, Md. S., Al- Faisal, A., Hasan, M.M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18 (100314), 18 pp. https://doi.org/10.1016/j.rsase.2020.100314
Alfraihat, R., Mulugeta, G., & Gala, T. (2016). Ecological evaluation of urban heat island in Chicago City, USA. Journal of Atmospheric Pollution, 4 (1), 23–29. https://doi.org/10.12691/jap-4-1-3
Alves, E.D.L. (2016). Seasonal and spatial variation of surface urban heat island intensity in a small urban agglomerate in Brazil. Climate, 4 (4, 61), 11 pp. https://doi.org/10.3390/cli4040061
Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using Landsat 8 satellite data. Journal of Sensors, 1480307, 8 pp. https://doi.org/10.1155/2016/1480307
Barbierato, E., Bernetti, I., Capecchi, I., & Saragosa, C. (2019). Quantifying the impact of trees on land surface temperature: A downscaling algorithm at city-scale. European Journal of Remote Sensing, 52 (4), 74–83. https://doi.org/10.1080/22797254.2019.1646104
Behan, J., McQuinn, K.& Roche, M.J. (2006). Rural land use: Traditional agriculture or forestry? Land Economics, 82 (1), 112–123. https://doi.org/10.3368/le.82.1.112
Bramley, G., & Watkins, D.G. (2014). ‘Measure twice, cut once’—Revisiting the strength and impact of local planning regulation of housing development in England. Environment and Planning B, 41 (5), 863–884. https://doi.org/10.1068/b39131
Brouwer, R., Lienhoop, N., & Oosterhuis, F. (2015). Incentivizing afforestation agreements: Institutional-economic conditions and motivational drivers. Journal of Forest Economics, 21 (4), 205–222. https://doi.org/10.1016/j.jfe.2015.09.003
Buijs, A., Hansen, R., Van der Jagt, S., Ambrose-Oji, B., Elands, B., Lorance Rall, E., Mattijssen, T., Pauleit, S., Runhaar, H., Stahl Olafsson, A., & Steen Møller, M. (2019). Mosaic governance for urban green infrastructure: Upscaling active citizenship from a local government perspective. Urban Foresting & Urban Greening, 40, 53–62. https://doi.org/10.1016/j.ufug.2018.06.011
Canu, S., Rosati, L., Fiori, M., Motroni, A., Filigheddu, R., & Farris, E. (2015). Bioclimate map of Sardinia (Italy). Journal of Maps, 11 (5), 711–718. https://doi.org/10.1080/17445647.2014.988187
Cardil, A., Salis, M., Spano, D., Delogu, G., & Molina Terrén, D. (2014). Large wildland fires and extreme temperatures in Sardinia (Italy). iForest - Biogeosciences and Forestry, 7 (3), 162–169. https://doi.org/10.3832/ifor1090-007
Centro Studi di Confagricoltura [Study Center of the Italian Confederation of Agriculture] (2015). L’agricoltura nelle Regioni d’Italia—2015—Sardegna [Agriculture in the Italian Regions—2015—Sardinia] - Retrieved from: http://confagricoltura.sardegna.it/download.php?id_file=GqIekCx7cV27DW8GoUH73cZ4gPKTXO%2Fki0dq2QPbe%2B3LUFQiyWPz7Wy4tFm8rrZ7ABsSHpzPqXrjFRIhP3wRm6GjEKxM51bWNKHOdwbA%2BAL6KOUmwu6HCW6Xh2Wd4yc0ahtc0d%2BVVgEhIERk6kmKRuRLxBu1ffAsQpkecln4RFg%3D
Chadchan, J., & Shankar, R. (2009). Emerging urban development issues in the context of globalization. Institute of Town Planners, India Journal, 6 (2), 78–85 - Retrieved from: http://www.itpi.org.in/pdfs/apr6_09.pdf
CLC (Corine Land Cover) (2018). Retrieved from: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
Cui, L., & Shi, J. (2012). Urbanization and its environmental effects in Shanghai, China. Urban Climate, 2, 1–15. https://doi.org/10.1016/j.uclim.2012.10.008
Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Bhave, A.G., Mittal, N., Feliu, E., & Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. Journal of Environmental Management, 146, 107–115. https://doi.org/10.1016/j.jenvman.2014.07.025
Dhar, R.B., Chakraborty, S., Chattopadhyay, R., & Sikdar, P.K. (2019). Impact of land-use/land-cover change on land surface temperature using satellite data: A case study of Rajarhat Block, North 24-Parganas District, West Bengal. Journal of the Indian Society of Remote Sensing, 47, 331–348. https://doi.org/10.1007/s12524-019-00939-1
Ding, H., & Shi, W. (2013). Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. International Journal of Remote Sensing, 34 (15), 5503–5517. https://doi.org/10.1080/01431161.2013.792966
Dodo, M.K. (2014). Examining the potential impacts of climate change on international security: EU-Africa partnership on climate change. SpringerPlus, 3 (194), 18 pp. https://doi.org/10.1186/2193-1801-3-194
Duesberg, S., Ní Dhubháin, A., & O’Connor, D. (2014). Assessing policy tools for encouraging farm afforestation in Ireland. Land Use Policy, 38, 194–203. https://doi.org/10.1016/j.landusepol.2013.11.001
EEA (European Environment Agency) (2006). Land Accounts for Europe 1990–2000: Towards Integrated Land and Ecosystem Accounting, Report no. 11. Luxembourg: Office for Official Publications of the European Communities.
Echevarria Icaza, L., Van der Hoeven, F., & Van den Dobbelsteen, A. (2016), Surface thermal analysis of North Brabant cities and neighbourhoods during heat waves, TeMA - Journal of Land Use, Mobility and Environment, 9 (1), 63-87. https://doi.org/10.6092/1970-9870/3741
Feizizadeh, B., Blaschke, T., Nazmfar, H., Akbari, E., & Kohbanani, H.R. (2013). Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County. Journal of Environmental Planning and Management, 56 (9), 1290–1315. https://doi.org/10.1080/09640568.2012.717888
Feldhake, C.M., Glenn, D.M., & Peterson, D.L. (1996). Pasture soil surface temperature response to drought. Agronomy Journal, 88 (4), 652–656. https://doi.org/10.2134/agronj1996.00021962008800040025x
Fischer, E.M., & Schär, C. (2010). Consistent geographical patterns of changes in high-impact European heatwaves. Nature Geoscience, 3, 398–403. https://doi.org/10.1038/ngeo866
Fonseka, H.P.U., Zhang, H., Sun, Y., Su, H., Lin, H., & Lin, Y. (2019). Urbanization and its impacts on land surface temperature in Colombo metropolitan area, Sri Lanka, from 1988 to 2016. Remote Sensing, 11 (8, 957), 18 pp. https://doi.org/10.3390/rs11080957
Fors, H., Frøik Molin, J., Murphy, M.A., & Konijnendijk van den Boschab, C. (2015). User participation in urban green spaces—For the people or the parks? Urban Foresting & Urban Greening, 14 (3), 722–734. https://doi.org/10.1016/j.ufug.2015.05.007
Ge, J. (2010). MODIS observed impacts of intensive agriculture on surface temperature in the southern Great Plains. International Journal of Climatology, 30 (13), 1994–2003. https://doi.org/10.1002/joc.2093
Geneletti, D., Cortinovis, C., Zardo, L., & Adem Esmail, B. (2019). Planning for Ecosystem Services in Cities. Dordrecht, Germany: Springer. https://doi.org/10.1007/978-3-030-20024-4
Gohain, K.J., Mohammad, P., & Goswami, A. (2020). Assessing the impact of land use land cover changes on land surface temperature over Pune city, India. Quarternary International, in press. https://doi.org/10.1016/j.quaint.2020.04.052
Gómez-Baggethun, E., & Barton, D.N. (2013). Classifying and valuing ecosystem services for urban planning. Ecological Economics, 86, 235–245, https://doi.org/10.1016/j.ecolecon.2012.08.019
Guha, S., Govil, H., Dey, A., & Gill, N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. European Journal of Remote Sensing, 51 (1), 667–678. https://doi.org/10.1080/22797254.2018.1474494
Gutiérrez Rodríguez, L., Hogarth, N., Zhou, W., Xie, C., Zhang, K., & Putzel, L. (2015). Socioeconomic and environmental effects of China’s conversion of cropland to forest program after 15 years: A systematic review protocol. Environmental Evidence, 4 (6), 11 pp. https://doi.org/10.1186/s13750-015-0033-8
Gutiérrez Rodríguez, L., Hogarth, N., Zhou, W., Putzel, L., Xie, C., & Zhang, K. (2016). China’s conversion of cropland to forest program: A systematic review of the environmental and socioeconomic effects. Environmental Evidence, 5 (21), 22 pp. https://doi.org/10.1186/s13750-016-0071-x
Howley, P., Buckley, C., O’Donoghue, C., & Ryan, M. (2015). Explaining the economic ‘irrationality’ of farmers’ land use behaviour: The role of productivist attitudes and non-pecuniary benefits. Ecological Economics, 109, 186–193. https://doi.org/10.1016/j.ecolecon.2014.11.015
Hulley, G.C., Ghent, D., Göttsche, F.M., Guillevic, P.C., Mildrexler, D.J., Coll, & C. Land (2019). Surface temperature. In Hulley, G.C., & Ghent, D. (Eds.). Taking the Temperature of the Earth Steps Towards Integrated Understanding of Variability and Change, pp. 57-127, Amsterdam, The Netherlands: Elsevier.
Hyytiainen, K., Leppanen, J., & Pahkasalo, T. (2008). Economic analysis of field afforestation and forest clearance for cultivation in Finland. In Proceedings of the International Congress of European Association of Agricultural Economists, Ghent, Belgium, 26–29 August 2008. https://doi.org/10.22004/ag.econ.44178
Irmak, A. (Ed.) (2012). Remote Sensing and Modeling. London, United Kingdom: IntechOpen. https://doi.org/10.5772/725
Jenning, V., Larson, L., & Yun, J. (2016). Advancing sustainability through urban green space: Cultural ecosystem services, equity, and social determinants of health. International Journal of Environmental Research and Public Health, 13 (2, 196), 15 pp. https://doi.org/10.3390/ijerph13020196
Kaniewski, D., Marriner, N., Cheddadi, R., Fischer, P.M., Otto, T., Luce, F., & Van Campo, E. (2020). Climate change and social unrest: A 6,000-year chronicle from the eastern Mediterranean. Geophysical Research Letters, 47 (7). https://doi.org/10.1029/2020GL0 87496
Kim, Y.-H., & Baik, J.-J. (2005). Spatial and temporal structure of the urban heat island in Seoul. Journal of Applied Meteorology, 44 (5), 591–605. https://doi.org/10.1175/JAM2226.1
Kosztra, B., Büttner, G., Hazeu, G., & Arnold, S. (2019). Updated CLC Illustrated Nomenclature Guidelines. Vienna, Austria: Environment Agency Austria.
Kumm, K.-I., & Hessle, A. (2020). Economic comparison between pasture-based beef production and afforestation of abandoned land in Swedish forest districts. Land, 9 (2, 42), 20 pp. https://doi.org/10.1016/10.3390/land9020042
Lai, S., Leone, F., & Zoppi, C. (2020). Spatial distribution of surface temperature and land cover: A study concerning Sardinia, Italy. Sustainability, 12 (8, 3186), 20 pp. https://doi.org/10.3390/su12083186
Launeau, P., Giraud, M., Ba, A., Moussaoui, S., Robin, M., Debaine F., Lague, D., & Le Menn, E. (2018). Full-waveform LiDAR pixel analysis for low-growing vegetation mapping of coastal foredunes in Western France. Remote Sensing, 10 (5, 669), 14 pp. https://doi.org/10.3390/rs10050669
Li, X.-X., Koh, T.-Y., Panda, J., & Norford, L.K. (2016). Impact of urbanization patterns on the local climate of a tropical city, Singapore: An ensemble study. Journal of Geophysical Research Atmospheres, 121 (9), 4386–4403. https://doi.org/10.1002/2015JD024452
Mathey, J., Rößler, S., Lehmann, I., & Bräuer, A. (2011). Urban green spaces: Potentials and constraints for urban adaptation to climate change. In Otto-Zimmermann, K. (Ed.). Resilient Cities. Cities and Adaptation to Climate Change. Proceedings of the Global Forum 2010, Munich, Germany, 19–20 May 2010, Volume 1, Dordrecht, Germany: Springer, pp. 479–485. https://doi.org/10.1080/01426397.2016.117365
Mayor of London (2006). London’s Urban Heat Island: A Summary for Decision Makers. Greater London, United Kingdom: London Authority, City Hall.
Mazzeo, G., Zucaro, F., & Morosini, R. (2019). Green is the colour. Standards, equipment and public spaces as paradigm for the Italian sustainable city. TeMA - Journal of Land Use, Mobility and Environment, 12 (1), 31-52. https://doi.org/10.6092/1970-9870/5836
Mendonca, F. (2009). Urban heat and urban cool islands: influences of vegetation and soil surface in some cities, southern Brazil. Paper presented at the Seventh International Conference on Urban Climate, 29 June - 3 July 2009, Yokohama, Japan. Retrieved from: http://www.ide.titech.ac.jp/~icuc7/extended_abstracts/pdf/381053-1-090514071731-004.pdf
Millennium Ecosystem Assessment (2003). Ecosystems and Human Well-Being: A Framework for Assessment. Washington, DC, United States: Island Press.
Mohammad, P., Goswami, A., & Bonafoni, S. (2019). The impact of the land cover dynamics on surface urban heat island variations in semi-arid cities: a case study in Ahmedabad City, India, using multi-sensor/source data. Sensors, 19 (17, 3701), 21 pp. https://doi.org/10.3390/s19173701
Mokhtari, A., Mansor, S.B., Mahmud, A.R., & Helmi, Z.M. (2011). Monitoring the impacts of drought on land use/cover: A developed object-based algorithm for NOAA AVHRR time series data. Journal of Applied Sciences, 11 (17), 3089–3103. https://doi.org/10.3923/jas.2011.3089.3103
Munafò, M. (Ed.) (2019). Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2019 [Land Take, Territorial Dynamics and Ecosystem Services. 2019 Edition], Report no. 8. Rome, Italy: Sistema Nazionale per la Protezione dell’Ambiente (SNPA). Retrieved from: https://www.snpambiente.it/wp-content/uploads/2019/09/Rapporto_consumo_di_suolo_20190917-1.pdf
Munafò, M. (Ed.) (2020). Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici. Edizione 2020 [Land Take, Territorial Dynamics and Ecosystem Services. 2020 Edition], Report no. 15. Rome, Italy: Sistema Nazionale per la Protezione dell’Ambiente (SNPA). Retrieved from: https://www.snpambiente.it/wp-content/uploads/2020/07/Rapporto_consumo_di_suolo_2020.pdf
Ndossi, M.I., & Avdan, U. (2016). Application of open source coding technologies in the production of Land Surface Temperature (LST) maps from Landsat: A PyQGIS Plugin. Remote Sensing, 8 (5, 413), 31 pp. https://doi.org/10.3390/rs8050413
Nguyen, T.M., Lin, T.-H., & Chan, H.-P. (2019). The environmental effects of urban development in Hanoi, Vietnam from satellite and meteorological observations from 1999–2016. Sustainability, 11 (6, 1768), 24 pp. https://doi.org/10.3390/su11061768
Oke, T.R. (1988). The urban energy balance. Progress in Physical Geography: Earth and Environment, 12 (4), 471–508. https://doi.org/10.1177/030913338801200401
Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egyptian Journal of Remote Sensing and Space Science, 20 (1), 125–145. https://doi.org/10.1016/j.ejrs.2016.11.003
Peng, S., Piao, S, Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F.M., Nan, H., Zhou, L., & Myneni, R.B. (2012). Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46 (2), 696–703. https://doi.org/10.1021/es2030438
Pérez-Urrestarazu, L., Fernández-Cañero, R., Franco-Salas, A., & Egea, G. (2015). Vertical greening systems and sustainable cities. Journal of Urban Technology, 22 (4), 65–85. https://doi.org/10.1080/10630732.2015.1073900
Pötz, H., Sjauw En Wa-Windhorst, A., & van Someren, H. (2016). Urban Green-Blue Grids Manual for Resilient Cities. Delft, The Netherlands: Atelier Groenblauw.
Pungetti, G., Marini, A., & Vogiatzakis, I. (2008). Sardinia. In Vogiatzakis, I., Pungetti, G., & Mannion, A.M. (Eds). Mediterranean Island Landscapes, Landscape Series, Vol. 9, Dordrecht, Germany: Springer, pp. 143–169. https://doi.org/10.1007/978-1-4020-5064-0_8
Rasul, A., Balzter, H., & Smith, C. (2015). Urban climate spatial variation of the daytime surface urban cool island during the dry season in Erbil, Iraqi Kurdistan, from Landsat 8. Urban Climate, 14 (2), 176–186. https://doi.org/10.1016/j.uclim.2015.09.001
Rasul, A., Balzter, H., & Smith, C. (2016). Diurnal and seasonal variation of surface urban cool and heat islands in the semi-arid city of Erbil, Iraq. Climate, 4 (3, 42), 16 pp. https://doi.org/10.3390/cli4030042
Regione Autonoma della Sardegna [Autonomous Region of Sardinia] (2019a). Strategia regionale di adattamento ai cambiamenti climatici [Regional Strategy for the adaptation to climate changes]. Retrieved from: http://delibere.regione.sardegna.it/protected/45523/0/def/ref/DBR45368/
Regione Autonoma della Sardegna [Autonomous Region of Sardinia] (2019b). Strategia regionale di adattamento ai cambiamenti climatici. Allegato 1. Metodi e strumenti per la Strategia regionale di adattamento ai cambiamenti climatici [Regional Strategy for the adaptation to climate changes. Annex 1. Methods and tools for the Regional Strategy for the adaptation to climate changes.]. Retrieved from: http://delibere.regione.sardegna.it/protected/45525/0/def/ref/DBR45368/
Ryan, M., & O’Donoghue, C. (2016). Socio-economic drivers of farm afforestation decision-making. Irish Forestry Journal, 73 (1-2), 96–121.
Scarano, M., & Sobrino, J.A. (2015). On the relationship between the sky view factor and the land surface temperature derived by Landsat-8 images in Bari, Italy. International Journal of Remote Sensing, 36 (19-20), 4820–4835. https://doi.org/10.1080/01431161.2015.1070325
Seddaiu, G., Porcu, G., Ledda, L., Roggero, P.P., Agnelli, A, & Corti, C. (2013). Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agriculture, Ecosystems & Environment, 167(1), 1–11. https://doi.org/10.1016/j.agee.2013.01.002
Shirgir, E., Kheyroddin, R., & Behzadfar, M. (2019). Defining urban green infrastructure role in analysis of climate resiliency in cities based on landscape ecology theories. TeMA - Journal of Land Use, Mobility and Environment, 12 (3), 227-247. https://doi.org/10.6092/1970-9870/6250
Skelhorn, C., Lindley, S., & Levermore, G. (2014). The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landscape and Urban Planning, 121, 129–140. https://doi.org/10.1016/j.landurbplan.2013.09.012
Slätmo, E., Nilsson, K., & Turunen, E. (2019). Implementing green infrastructure in spatial planning in Europe. Land, 8 (4, 62), 21 pp. https://doi.org/10.3390/land8040062
Sruthi, S., & Aslam, M.A.M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data: A case study of Raichur District. Aquatic Procedia, 4, 1258–1264. https://doi.org/10.1016/j.aqpro.2015.02.164
Stroppiana, D., Antoninetti, M., & Brivio, P.A. (2014). Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. European Journal of Remote Sensing, 47 (1), 133–152. https://doi.org/10.5721/EuJRS20144709
Townshend, J.R.G., Goff, T.E., & Tucker, C.J. (1985). Multitemporal dimensionality of images of normalized difference vegetation index at continental scales. IEEE Transactions on Geoscience and Remote Sensing, GE-23 (6), 888–895. https://doi.org/10.1109/TGRS.1985.289474
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M., & Kieu, H.V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. doi: https://doi.org/10.1016/j.isprsjprs.2017.01.001
Ustaoglu, E., & Aydınoglu, A. (2019). Land suitability assessment of green infrastructure development. A case study of Pendik District (Turkey). TeMA - Journal of Land Use, Mobility and Environment, 12 (2), 165-178. https://doi.org/10.6092/1970-9870/6118
Walawender, J.P., Szymanowski, M., Hajto, M.J., & Bokwa, A. (2014). Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ Data. Pure and Applied Geophysics, 171, 913–940. https://doi.org/10.1007/s00024-013-0685-7
Webster, C. (2005). The new institutional economics and the evolution of modern urban planning: Insights, issues and lessons. Town Planning Review, 76 (4), 455–484. https://doi.org/10.3828/tpr.76.4.5
Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89 (4), 467-483. https://doi.org/10.1016/j.rse.2003.11.005
Youneszadeh, S., Amiri, N., & Pilesjo, P. (2015). The effect of land use change on land surface temperature in the Netherlands. In Proceedings of the International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 23–25 November 2015, Volume 41, pp. 745–748. https://doi.org/10.5194/isprsarchives-XL-1-W5-745-2015.
Zavalloni, M., D’Alberto, R., Raggi, M., & Viaggi, D. (2019). Farmland abandonment, public goods and the CAP in a marginal area of Italy. Land Use Policy, in press. 10. https://doi.org/10.1016/j.landusepol.2019.104365
Zhang, J., Wang, Y., & Li, Y. (2006). A C++ Program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Computers & Geosciences, 32 (10), 1796–1805. https://doi.org/10.1016/j.cageo.2006.05.001
Zhang, Y., & Sun, L. (2019). Spatial-temporal impacts of urban land use land cover on land surface temperature: Case studies of two Canadian urban areas. International Journal of Applied Earth Observation and Geoinformation, 75, 171–181. https://doi.org/10.1016/j.jag.2018.10.005
Zhao, C., Jensen, J., Weng, Q., & Weaver, R. (2018). A geographically weighted regression analysis of the underlying factors related to the surface urban heat island phenomenon. Remote Sensing, 10 (9, 1428), 18 pp. https://doi.org/10.3390/rs10091428
Zhou, W., Qian, Y., Li, X., Li, W., & Han, L. (2014). Relationships between land cover and the surface urban heat island: Seasonal variability and effects of spatial and thematic resolution of land cover data on predicting land. Landscape Ecology, 29, 153–167. https://doi.org/10.1007/s10980-013-9950-5
Zucaro, F., & Morosini, R. (2018). Sustainable land use and climate adaptation: A review of European local plans. TeMA - Journal of Land Use, Mobility and Environment, 11 (1), 7-26. https://doi.org/10.6092/1970-9870/5343
Zullo, F., Fazio, G., Romano, B., Marucci, A., & Fiorini, L. (2019). Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): A study in the Po Valley (Italy). Science of the Total Environment, 650 (2), 1740–1751. https://doi.org/10.1016/j.scitotenv.2018.09.331
Copyright (c) 2020 TeMA - Journal of Land Use, Mobility and Environment
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following:
1. Authors retain the rights to their work and give in to the journal the right of first publication of the work simultaneously licensed under a Creative Commons License - Attribution that allows others to share the work indicating the authorship and the initial publication in this journal.
2. Authors can adhere to other agreements of non-exclusive license for the distribution of the published version of the work (ex. To deposit it in an institutional repository or to publish it in a monography), provided to indicate that the document was first published in this journal.
3. Authors can distribute their work online (ex. In institutional repositories or in their website) prior to and during the submission process, as it can lead to productive exchanges and it can increase the quotations of the published work (See The Effect of Open Access)