A Decision Support System for analysing conflicts related to pricing policies implementation
Abstract
In recent years several European cities have introduced pricing policies as a tool for managing transport demand, especially to reduce traffic congestion and rebalance the modal split between private vehicles and mass-transit systems. Indeed, user behaviour brings about a User Equilibrium condition which does not correspond to overall utility maximisation and fails to take account of external costs. Hence, in order to achieve the efficient use of transportation systems (System Equilibrium), tolls can be charged on urban roads so that the social surplus is maximised. For several reasons (theoretical, political, social acceptability) it is impossible to charge “efficient tolls” (first-best solutions) proposed in the literature; therefore in real networks sub-optimal tolls (second-best solutions) are applied. Moreover, one of the main problems related to pricing policy application is their acceptability among community and/or social categories (such as shopkeepers, residents, commuters, etc.) leading to conflicts and oppositions.
In this paper we analyse the effects on optimal fare design when pricing revenues are wholly or partly used for improving public transport. In particular, we formulate a model according to economic theory in a multimodal and multiuser context, where multimodal features are calculated explicitly on the network for each fare configuration. The model is applied on a trial network (built with heterogeneous values of relative accessibility among different traffic zones) and several second-best strategies are analysed with particular attention to the use of pricing revenue.
Downloads
References
Agenzia Milanese Mobilità e Ambiente (2009) “Monitoraggio Ecopass: Gennaio–Dicembre 2008”.
Arnott R., Krauss M. (1998) “When are anonymous congestion charges consistent with marginal cost pricing?”, Journal of Public Economics 67, 45-64.
Beckmann M., Mcguire C.B., Winsten C.B. (1956) “Studies in the Economics of Transportation”, Yale University Press, New Haven (CT), USA.
Cantarella G.E. (1997) “A general fixed-point approach to multimodal multi-user equilibrium assignment with elastic demand”, Transportation Science 31, 107-128.
Cascetta E. (2009) “Transportation systems analysis: models and applications”, Springer, New York (NY), USA.
D’Acierno L., Gallo M., Montella B. (2006) “Optimisation models for the urban parking pricing problem”, Transport Policy 13, 34-48.
Ekström J., Engelson L., Rydergren C., 2009. “Heuristic algorithms for a second-best congestion pricing problem”. Netnomics 10, pp. 85-102.
Eliasson J., Hultkrantz L., Nerhagen L., Rosqvist L.S. (2009) “The Stockholm congestion-charging trial 2006: Overview of effects”, Transportation Research Part A 43, 240-250.
Farrel S., Salesh W. (2005) “Road-user charging and the modelling of revenue allocation”, Transport Policy 12, 431-442.
Ferrari P. (2005) “Road Pricing and users’ surplus”, Transport Policy 12, 477-487.
Gentile G., Papola N., Persia L. (2005) “Advanced pricing and rationing policies for large scale multimodal networks”, Transportation Research Part A 39, 612-631.
Ieromonachou P., Potter S., Warren J.P. (2007) “A strategic niche analysis of urban road pricing in the UK and Norway”, European Journal of Transport and Infrastructure Research 7, 15-38.
Hamdouch Y., Florian M., Hearn D.W., Lawphongpanich S. (2007) “Congestion pricing for multi-modal transportation systems”. Transportation Research Part B 41, 275-291.
Huang H.J. (2002) “Pricing and logit-based mode choice models of a transit and highway system with elastic demand”, European Journal of Operational Research 140, 562-570.
Kottenhoff K., Brundell Freij K. (2009) “The role of public transport for feasibility and acceptability of congestion charging-The case of Stockholm”, Transportation Research 43, 297-305.
Kuwahara M. (2007) “A theory and implications on dynamic marginal cost”, Transportation Research Part A 41, 627-643.
Lawphongpanich S., Hearn D.W. (2004) “An MPEC approach to second-best toll pricing”, Mathematical Programming 101, 33-35.
Odeck J., Bråthen S., 2008. “Travel demand elasticities and users attitudes: A case study of Norwegian toll projects”. Transportation Research A, 42 pp. 77-94.
Pigou A.C. (1920) “The economics of welfare”, MacMillan, London, United Kingdom.
Prud’homme R., Bocarejo J.P. (2005) “The London congestion charge: a tentative economic appraisal”, Transport Policy 12, 279-287.
Rouwendal J., Veroef E.T. (2006) “Basic economic principles of road pricing: From theory to applications”, Transport Policy 13, 106-114.
Stewart K. (2007) “Tolling traffic links under stochastic assignment: Modelling the relationship between the number and price level of tolled links and optimal traffic flows”, Transportation Research Part A 41, 644-654.
Transport for London (2008) “Central London Congestion Charging: Impacts Monitoring”, 6th Annual Report, Transport for London, London, United Kingdom.
Verhoef E.T., Nijkamp P., Rietveld P. (1996) “Second-best congestion pricing: the case of an untolled alternative”, Journal of Urban Economics 40, 279-302.
Verhoef E.T. (2002) “Second best congestion pricing in a general networks: heuristic algorithms for finding second-best optimal toll levels and toll points”. Transportation Research Part B 36, 707-729.
Yang H., Huang H.J. (2004) “The multi-class, multi-criteria traffic network equilibrium and system optimum problem”, Transportation Research Part B 38, 1-15.
Yang H., Zhang X. (2008) “Existence of anonymous link tolls for system optimum on networks with mixed equilibrium behaviours”, Transportation Research Part B 42, 99-112.
Yildirim M.B., Hearn D.W. (2005) “A first best toll pricing framework for variable demand traffic assignment problems”, Transportation Research Part B 39, 659-678.
Zhang H., Ge Y.E. (2004) “Modeling variable demand equilibrium under second-best road pricing”, Transportation Research Part B 38, 733-749.
Copyright (c) 2014 Tema. Journal of Land Use, Mobility and Environment
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following:
1. Authors retain the rights to their work and give in to the journal the right of first publication of the work simultaneously licensed under a Creative Commons License - Attribution that allows others to share the work indicating the authorship and the initial publication in this journal.
2. Authors can adhere to other agreements of non-exclusive license for the distribution of the published version of the work (ex. To deposit it in an institutional repository or to publish it in a monography), provided to indicate that the document was first published in this journal.
3. Authors can distribute their work online (ex. In institutional repositories or in their website) prior to and during the submission process, as it can lead to productive exchanges and it can increase the quotations of the published work (See The Effect of Open Access)