Climate risk, Environmental planning, Urban design

Main Article Content

Mario Losasso


The vulnerability of the territory and of urban districts and buildings is systemic and related to specific hazard and to the level of exposure of people and economic assets. Among the environmental risks, climate risk has multiple interpretations. The sources of the governmental organizations and scientific institutions indicate that the growing influence on the climate and the earth's temperature depend on the increasing emissions of greenhouse gases. The main international strategies are addressed in the medium and long term to establish mitigation of the causes that induce dangerous impacts in relation to the degree of vulnerability of contexts. The identification of local vulnerability, risks and activation of local resources, useful to improve the resilience and adaptive capacity, represent the link between the scale of urban planning and a more detailed scale, in which act through strategies "Climate-smart" in technological innovation and environmental design of buildings and open spaces system. Environmental design fits into the panorama of architectural design with the aim to define the boundaries and determine limits and goals related to the complex relationship between inhabitants and environment. In the field of new dwelling, but also in buildings and open spaces rehabilitation, the systemic and performance approach integrates the emerging scenarios of the digitization of built environment sector, that combine greater efficiency for the project and for the building process, developing preventive checks of the aspects of technical and performance simulation control.


Download data is not yet available.

Article Details

How to Cite
LosassoM. (2016). Climate risk, Environmental planning, Urban design. UPLanD - Journal of Urban Planning, Landscape & Environmental Design, 1(1), 219.


Colombo, U., & Lanzavecchia, G. (2005). L’ambiente. Milano, IT: Motta.

Conato, F., & Frighi, V. (2016). Metodi della progettazione ambientale. Approccio integrato multiscala per la verifica prestazionale del progetto di architettura. Milano, IT: Franco Angeli Editore.

Dierna, S. (1995). Tecnologie del progetto ambientale. Per una trasformazione sostenibile degli aspetti insediativi. In Teaching in Architecture Energy and Environment World Network, Proceedings of the Florence International Conference for Teachers of Architecture, Firenze, September 28-30, 1995.

European Commission. (2016, November 22). Climate Action. Retrieved from
Galderisi, A. (2014). Urban Resilience: a framework for empowering cities in face of heterogeneous risk factors. A| Z Journal-Cities at risk, 11(2).

Regione Lombardia (2015). About concepts of dangerousness and risk vulnerabilities, Directorate-General, Security, civil protection and immigration.

Milanaccio, A. (1998). Dalla lotta all’ inquinamento alla società sostenibile. In P. Ceri e P. Borgna (eds). La tecnologia per il XXI secolo. Prospettive di sviluppo e rischi di esclusione (215-237). Torino, IT: Einaudi.

Pellizzaro, P. (2013). L’adattamento necessario. QualEnergia,1.
Pierce, D. (2015). Resiliency. Retrieved from

Rigillo, M. (2016). Strategie europee per la ricerca e cultura tecnologica del progetto. In M. Gambaro (ed.), La progettazione tecnologica e gli scenari della ricerca. Santarcangelo di Romagna, IT: Maggioli.

Rischio ambientale. (n.d.). In Enciclopedia Treccani. Retrieved from

Schiaffonati, F. (2011). La valorizzazione dei beni culturali tra ricerca e formazione dottorale. In AA.VV., Progetto e tecnologie per la valorizzazione dei beni culturali. Quaderni del dottorato PTVBC,1, 11.