Spatial refinement to better evaluate mobility and its environmental impacts inside a neighborhood

Main Article Content

Natalia Kotelnikova-Weiler
Fabien Leurent
Alexis Poulhès


A large share of a neighborhood project’s environmental impacts is due to mobility. It either takes place inside the neighborhood, such as transit traffic or internal mobility, or is induced by it and exchanged with the rest of the urban area. A way to improve mobility impacts evaluation in the assessment of neighborhood alternative designs, is to refine traffic simulation models making them more sensitive to spatial design while keeping their sensitivity to local traffic conditions and associated energy consumption and pollutants’ emissions.

This paper introduces a methodology relying on the classic four-step scheme for mobility demand modelling together with specific spatial refinement. The neighborhood is divided into fine sub-areas, with specific consequences for each step: first, trips are generated on the basis of sub-area land-use and activity data; second, the trips are distributed between all Traffic Analysis Zones (TAZs), enabling to identify internal short-range trips; third, the mode choice model takes into account the particular access conditions between sub-areas and transit stations or roadway nodes; fourth, traffic assignment involves finer TAZs and finer path description. Furthermore, a 5th step is added to deal with environmental evaluation, especially the allocation of mobility impacts to the project’s sub-areas. These steps are presented and illustrated on the ‘Cité Descartes’ district case study, in Eastern Paris. Dividing its 1 km² area into about 100 sub-areas enabled us to depict the projects’ program and spatial layout very finely, especially so in relation to the transit stops and stations location. Some limitations and needs for further research are also outlined.


Download data is not yet available.

Article Details

How to Cite
Kotelnikova-WeilerN., LeurentF., & PoulhèsA. (2017). Spatial refinement to better evaluate mobility and its environmental impacts inside a neighborhood. UPLanD - Journal of Urban Planning, Landscape & Environmental Design, 2(1), 137-151.


Beckx, C., Int Panis, L., Uljee, I., Arentze, T., Janssens, D., & Wets, G. (2009). Disaggregation of nation-wide dynamic population exposure estimates in The Netherlands: Application of activity-based transport models. Atmospheric Environment, 43, 5454-5462.

De Bortoli, A., Féraille, A., & Leurent, F. (2016). Environmental performance of urban transit modes: a Life Cycle Assessment of the Bus Rapid Transit. Proceedings of the International Conference on Sustainable Built Environment. Hamburg, March 7-11, 2016.

Fallah Shorshanni, M., André, M., Bonhomme, C., & Seigneur, C. (2015). Modelling chain for the effect of road traffic on air and water quality: Techniques, current status and future prospects. Environmental Modelling & Software, 64, 102-123.

François, C., Gondran, N., Nicolas, J.-P., & Parsons, D. (2017). Environmental assessment of urban mobility: Combining life cycle assessment with land-use and transport interaction modelling – Application to Lyon (France). Ecological Indicators, 72, 597-604.

Hülsmann, F., Gerike, R., & Ketzel, M. (2014). Modelling traffic and air pollution in an integrated approach – the case of Munich. Urban Climate, 10, 732-744.

Institute for Research on Urban Sciences and Techniques, IRSTV (2017, January 26). Eval-PDU. Retrieved from

Kotelnikova-Weiler, N., Leurent, F., & Poulhès, A. (2016). Attribution methodologies for mobility impacts. Proceedings of the European Transport Conference, Barcelona, October 5‐7, 2016.

Lotteau, M., Loubet, P., Pousse, M., & Dufrasnes, E. (2015). Critical review of life cycle assessment (LCA) for the built environment at the neighborhood scale. Building and Environment, 93, 165-178.

Mailhac, A., Herfray, G., Schiopu, N., Kotelnikova-Weiler, N., Poulhès, A., Mainguy, S., Grimaud, J., Serre, J., Sibiude, G., Lebert, A., Peuportier, & B., Valean, C. (2016). LCA applicability at tdistrict scale demonstrated throughout a case study: shortcomings and perspectives for future improvements. Proceedings of the Systainable Built Environment (SBE) regional conference, Zurich, June 15‐17, 2016.

Manout, O., Bonnel, P., & Ouaras, H. (2017) L’impact de l’agrégation zonale sur la modélisation des transports: une approche statistique, 4èmes Rencontres interdisciplinaires doctorales de l’architecture et de l’aménagement durables, Vaulx-en-Velin, January 25, 2017

Mestayer, P. (Ed.) (2012). Eval-PDU. Évaluation des impacts environnementaux d'un PDU et de leurs conséquences socio-économiques : développements méthodologiques et tests sur le PDU de Nantes Métropole. Rapport Scientifique final. Programme ANR Villes Durables ANR-08-VILL-0005

Ortuzar, J.D., & Willumsen, L.G. (2011). Modelling Transport (fourth ed.). Chichester: John Wiley, Sons Ltd.

Quinet, E. (Chair.) (2013). Cost benefit assessment of public investments. Final Report. Summary and recommendations. Paris: CGSP (Policy Planning Commission)

Sétra, Cété de Lyon, Cété Normandie-Centre (November 2009). Emissions routières de polluants atmosphériques. Courbes et facteurs d’influence. (Sétra Information Note – Economy, Environment, Design series n°92)

Simonet, T. (August 2012). Modèle regional multimodal de déplacements MODUS. Hypothèses et Données. Spécifications (Technical Note, Direction Régionale et Interdépartementale de l’Equipement et de l’Aménagement d’Ile-de-France).

Vanhille, E. (2015). Modélisation et évaluation environnementale de la mobilité. Application à un projet d’aménagment de la Cité Descartes Elargie (Master’s thesis, Ecole des Ponts ParisTech, France).