Nanoparticles on electric, gas, and diesel buses in mass transit buses of Bogotá Colombia

  • Diego Armando Vargas Department of Thermal Engines and Machines, School of Marine, Nautical and Radioelectronic Engineering University of Cádiz, Cádiz, Spain
  • Boris Galvis Escuela de Ingeniería de los Recursos Naturales y del Ambiente – EIDENAR. Sanitary and Environmental Engineering, Universidad del Valle, Bogotá, Colombia
  • Vanesa Durán Department of Thermal Engines and Machines, School of Marine, Nautical and Radioelectronic Engineering University of Cádiz, Cádiz, Spain
  • Ivan Camilo Bernal Gesoltec, Bogotá, Colombia
Keywords: Diesel buses, BEV electric buses, CNG compressed natural gas buses, Nanoparticles, LDSA lung deposited surface area, Mass transit system


The concentration of traffic-related air pollutants (TRAP) within transport microenvironments has become increasingly relevant in many megacities with high population density, intense traffic, and prolonged travel times. These conditions can intensify exposure to TRAP and exacerbate public health problems. However, TRAP concentrations in these microenvironments are changing due to the introduction of cleaner technologies. In this study, we compared the concentration of nanoparticles inside diesel, gas, and electric buses during their normal operation in Bogota, Colombia. We used a miniature diffusion size classifier (DiSCmini) to measure the nanoparticles' concentrations, average particle size, and lung-deposited surface area. Our results revealed significantly lower levels of this pollutant inside electric buses. Specifically, the concentration of nanoparticles per cubic centimeter was approximately 41% and 27% lower in electric buses compared to diesel and gas buses, respectively. Additionally, the lung-deposited surface area was also lower in electric buses. However, the average particle size in electric buses was 10% and 18% smaller compared to diesel and gas buses, respectively. The results of this study give useful information for future selection processes of bus technologies for public passenger transport in cities around the world; This research provides information that can be used in technical evaluation processes that link the possible health effects on commuters and impacts the environment.


Download data is not yet available.

Author Biographies

Diego Armando Vargas, Department of Thermal Engines and Machines, School of Marine, Nautical and Radioelectronic Engineering University of Cádiz, Cádiz, Spain

Production Engineer. Engineering Project Management Specialist. Master in Environmental Management. Master in Process Engineering. PhD student in Engineering at the University of Cádiz. University teacher and more than 16 years of Professional experience.

Boris Galvis, Escuela de Ingeniería de los Recursos Naturales y del Ambiente – EIDENAR. Sanitary and Environmental Engineering, Universidad del Valle, Bogotá, Colombia

Chemical Engineer, MSc in Civil and MSc in Environmental Engineering. PhD in Environmental Engineering. Associate Professor. Chemical Engineering Program.  Universidad de La Salle. Bogotá Colombia.

Vanesa Durán, Department of Thermal Engines and Machines, School of Marine, Nautical and Radioelectronic Engineering University of Cádiz, Cádiz, Spain

PhD Industrial engineering. Department of Thermal Engines and Machines, Director of the School of Marine, Nautical and Radioelectronic Engineering, Campus of International Excellence of the Sea (CEIMAR), University of Cadiz, Spain.

Ivan Camilo Bernal, Gesoltec, Bogotá, Colombia

Systems engineer and electronic technician with more than 18 years of experience in developing software for environmental monitoring sensors, technical expert in environmental instrumentation in areas of air, water, noise and occupational health.


Ali, M. & Liu, G. & Yousaf, B. & Ullah, H. & Abbas, Q. & Munir, M. (2019). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in an urban environment. Environmental Geochemistry and Health, 41(3), 1131-1162.

Beddows, D. & Harrison, R. (2021). PM10 and PM2.5 emission factors for non-exhaust particles from road vehicles: Dependence upon vehicle mass and implications for battery electric vehicles. Atmospheric Environment Journal, 244(1).

Bessagnet, B. & Allemand, N. & Putaud, J. & Couvidat, F. & André, J. & Simpson, D. & Thunis, P. (2022). Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles. A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. Applied Sciences, 12(7).

Behrentz E. (2009). Impacto del sistema de Transporte en los niveles de contaminación percibidos por los usuarios del espacio público. Dearq Jounal, 4(15).

Bielaczyc, P., Szczotka, A., & Woodburn, J. (2015). Regulated and Unregulated Exhaust Emissions from CNG Fueled Vehicles in Light of Euro 6 Regulations and the New WLTP/GTR 15 Test Procedure. SAE International Journal of Engines, 8(3), 1300–1312.

Cattaneo, A. & Garramone, G. & Taronna, M. & Peruzzo, C. & Cavallo M. (2009). Personal exposure to airborne ultrafine particles in the urban area of Milan. Journal of Physics: Conference Series, 151.

Chen, Y. & Ma, J. & Han, B. & Zhang, P. & Hua, H. & Chen, H. & Su, X. (2018) Emissions of automobiles fueled with alternative fuels based on engine technology: A review. Journal of Traffic and Transportation, 5(4), 318-334.

de Nazelle, A. & Bode, O. & Orjuela, J. P. (2017). Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review. Environ International Journal, 99, 151-160.

Deng, Q. & Deng, L. & Miao, Y. & Guo, X. & Li, Y. (2019). Particle deposition in the human lung: Health implications of particulate matter from different sources. Environ Research, 169, 237-245.

de Nazelle, A. & Fruin, S. & Westerdahl, D. & Martinez, D. & Ripoll, A. & Kubesch, N. & Nieuwenhuijsen, M. (2012). A travel mode comparison of commuters exposures to air pollutants in Barcelona. Atmospheric Environment Journal, 59, 151-159.

Distaso, E. & Amirante, R. & Calò, G. & De Palma, P. & Tamburrano, P. (2020) Evolution of Soot Particle Number, Mass and Size Distribution along the Exhaust Line of a Heavy-Duty Engine Fueled with Compressed Natural Gas. Energies Journal, 13(15).

Edenhofer O. & Pichs-Madruga R. & Sokona Y. & Farahani E. & Kadner S. & Seyboth K. & Adler A. & Baum I. & Brunner S.& Eickemeier P. & Kriemann B. & Savolainen J. & Schlömer S. & Stechow C. & Zwickel T. & Minx J.C. (2014). Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge. United Kingdom and New York. NY. USA. 31. In: Climate Change 2014: Mitigation of Climate Change 2014.

GhédiraA., & El KébirM. (2022). Youth urban mobility behaviours in Tunisian Sahel. TeMA - Journal of Land Use, Mobility and Environment, 15(2), 249-261.

Giechaskiel, B. (2018) Solid Particle Number Emission Factors of Euro VI Heavy-Duty Vehicles on the Road and in the Laboratory. International journal of environmental research and public health, 15(2), 304.

Gireesh Kumar, P., Lekhana, P., Tejaswi, M., & Chandrakala, S. (2022) Effects of vehicular emissions on the urban environment- a state of the art. Materials Today: Proceedings Journal. 45(7), 6314-6320.

Grütter J. (2006). Líneas base en proyectos de transporte urbano 2006 - Base lines in urban transport projects 2006. Biblioteca del Banco Interamericano de Desarrollo. Available at:

Gurram, S. & Stuart, A. & Pinjari, A. (2019). Agent-based modeling to estimate exposures to urban air pollution from transportation: Exposure: disparities and impacts of high-resolution data. Computers, Environment and Urban Systems Research, 75, 22-34.

Hassani, A. & Hosseini, V. (2016). An assessment of gasoline motorcycle emissions performance and understanding their contribution to Tehran air pollution. Transportation Research Part D: Transport and Environment, 47, 1–12.

Hernandez Palacio F. (2012). Sprawl and Fragmentation. The case of Medellin Region in Colombia. TeMA - Journal of Land Use, Mobility and Environment, 5(1), 101-120.

Hoffmann, B. (2019). Air Pollution in Cities: Urban and Transport Planning Determinants and Health in Cities. In: Integrating Human Health into Urban and Transport Planning. Cham: Springer International Publishing.

Howell-Moroney, M. (2008). "The Tiebout Hypothesis 50 Years Later: Lessons and Lingering Challenges for Metropolitan Governance in the 21st Century." Public Administration Review 68 (1): 97-109.

Hudda, N. & Simon, M. & Patton, A. & Durant, J. (2020). Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. Science of The Total Environment Journal, 742.

Istrate, M. & Nicolae, V. & Vîlcan, A. (2019). The reduction of the fuel consumption and of the pollution through the city public transport, IOP Conf. Series: Materials Science and Engineering 564. In: Innovative Manufacturing Engineering and Energy (IManEE 2019) - "50 Years of Higher Technical Education at the University of Pitesti" - The 23rd edition of IManEE 2019 International Conference 22–24.

Kholod, N. & Evans, M. (2016). Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environmental Science & Policy, 56. 1-8.

Knibbs, L. & Cole-Hunter, T. & Morawsca, L. (2011). A review of commuter exposure to ultrafine particles and its health effects. Atmospheric Environment Research, 45(16). 2611-2622.

Kwon, H.-S. & Ryu, M. & Carlsten, C. (2020) Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine Journal, 52(3). 318-328.

Liu, Y. & Chen, H. & Gao, J. & Li, Y. & Dave, K. & Chen, J. & Perricone, G. (2021). Comparative analysis of non-exhaust airborne particles from electric and internal combustion engine vehicles. Journal of Hazardous Materials, 420.

MaterniniG., RiccardiS., & CadeiM. (2014). Zero Emission Mobility Systems in Cities. Inductive Recharge System Planning in Urban Areas. TeMA - Journal of Land Use, Mobility and Environment.

Matz, C. & Egyed, M. & Hocking, R. & Seenundun, S. & Charman, N. & Edmonds, N. (2019). Human health effects of traffic-related air pollution (TRAP): a scoping review protocol. Systematic Reviews, 8(1), 223.

Morales, R. & Galvis, B. & Balachandran, S. & Ramos, J. & Sarmiento, O. & Gallo, S. & Contreras, Y. (2017). Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmospheric Environment, 157, 135-145.

Morales, R. & Galvis, B. & Mendez, D. & Rincón, J. & Contreras, Y. & Montejo, T. & Casas, O. (2022). Toward Cleaner Transport Alternatives: Reduction in Exposure to Air Pollutants in a Mass Public Transport. Environmental Science & Technology, 56(11), 7096-7106.

Moreno, T. & Reche, C. & Rivas, L. & Cruz, M. & Martins, V. & Vargas, C. & Buonanno, G. & Parga, J. & Pndolfi, M. & Brines, M. & Ealo, M. & Fonseca, A. & Amato, F. & Sosa, G. & Capdevila, M. & De Miguel, E. & Querol, X. & Gibbons, W. (2015). Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environmental Research, 142, 495-510.

Myung, C. L. & Park, S. (2012). Exhaust nanoparticle emissions from internal combustion engines: A review. International Journal of Automotive Technology, 13(1), 9-22.

Myung, C. & Lee, H. & Choi, K. et al. (2009). Effects of gasoline, diesel, LPG, and low-carbon fuels and various certification modes on nanoparticle emission characteristics in light-duty vehicles. Int Journal Automot Technol, 10, 537–544.

Navarro, S. & Meza, D. & Soto, D. & Castañeda, B. & Pedroza, M. (2021) Nanopartículas: efectos en la salud humana y el medio ambiente. Epistemus Research, 15(30), 58–64.

Ohlwein, S. & Kappeler, R. & Kutlar, M. & Künzli, N. & Hoffmann, B. (2019). Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. International Journal of Public Health, 64(4), 547-559.

Prati, M. & Mariani, A. & Torbati, R. et al. (2011). Emissions and combustion behavior of a bi-fuel gasoline and natural CNG spark ignition engine. SAE Int Journal Fuels Lubricants, 4, 328–338.

Ragettli, M. & Corradi, E. & Braun, C. & Schindler, C. & Nazalle, A. & Jarrett, M. & Ducret, R. & Künzli, N. & Phuleria, H. (2013). Commuter exposure to ultrafine particles in different urban locations, transportation modes and routes. Atmospheric Environment, 77, 376-384.

Raheel, S. & Shahzad, M. & Ahmad N. & Zamad, A. & Hussan S. & Asif, M. & Rehman, A. & Abdullah, M. & Shahzadi, G. & Waseem, M. (2020). Performance Evaluation of Bus Rapid Transit System: A 181 Comparative Analysis of Alternative Approaches for Energy Efficient Eco-Friendly Public Transport 182 System. Energies journal, 13(6), 1377.

Reina, G. & Piano, M. & Blanco, J. (2017). Vehicle parameter estimation using a model-based estimator. Mechanical Systems and Signal Processing, 87(15), 227-241.

Rodman, S. & Seljak, T. & Vihar, R. & Gerbec, M. & Katrašnik, T. (2018). Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies. Energies, 11(8), 2160.

Rodrigues, A. & Borges, R. & Machado, P. & Mouette, D. & Dutra, F. (2020). PM emissions from heavy-duty trucks and their impacts on human health. Atmospheric Environment, 241, 117814.

Rojas, N. (2004). Revisión de las emisiones de material particulado por la combustión de diésel y biodisel. Revista de Ingeniería de la Universidad de Los Andes, 20.

Salon, D. & Shewmake, S. (2011) Opportunities for Value Capture to Fund Public Transport. A Comprehensive Review of the Literature with a Focus on East Asia. or

Schraufnagel, D. The health effects of ultrafine particles. (2020). Experimental & Molecular Medicin, 52(3), 311-317.

Shahbazi, H. & Ganjiazad, R. & Hosseini, V. & Hamedi, M. (2017). Investigating the influence of traffic emission reduction plans on Tehran air quality using WRF/CAMx modeling tools. Transp Research Part D: Transp Environ, 57, 484–495.

Shekarrizfard, M. & Minet, L. & Miller, E. & Yusuf, B. & Weichenthal, S. & Hatzopoulou, M. (2020). Influence of travel behaviour and daily mobility on exposure to traffic-related air pollution. Environ Research, 184. 109326.

Singh, A. & Pal, A. & Agarwal, A. (2016). Características comparativas de partículasde motores de hidrógeno, GNC, HCNG, gasolina y diesel. Combustible, 185, 491-499.

Sirignano, M. & Conturso, M. & Magno, A. et al. (2018). Evidence of sub-10 nm particles emitted from a small-size diesel engine. Exp Thermal Fluid Sci, 95, 60–64.

Spinazzé, A. & Cattaneo, A. & Scocca, D. & Bonzini, M. & Cvallo, D. (2015). Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments. Atmospheric Environment, 110, 8-17.

Suárez, L. & Mesías, S. & Iglesias, V. & Silva, C. & Cáceres, D. &, Ruiz, P. (2016). Exposición personal a material particulado en viajeros que utilizan diferentes modos de transporte (autobús, bicicleta, automóvil y metro) en una ruta asignada en el centro de Santiago, Chile. Medio ambiente Res. Sci. Process Impacts, 16, 1309-1317

VanRyswyk, K. & Evans, G. & Kulka, R. & Sun, L. & Sabaliauskas, K. & Rouleau, M. & Weichenthal, S. (2021). Personal exposures to traffic-related air pollution in three Canadian bus transit systems: the Urban Transportation Exposure Study. Journal of Exposure Science & Environmental Epidemiology, 31(4), 628-640.

Vargas, D. & Durán, C. (2021). General Considerations For Linkedin Of An BEV Technology Buses In The Transport Systems – Test Results Of An Fully BEV Articulated Bus (18 Meters) From Bogotá To Pereira City, Colombia. South Florida Journal of Developmentt, 2(2).

Yarahmadi, M. & Hadei, M. & Nazari, S. & Alipour, M. & Ferrante, M. & Shahsavani, A. (2018). Mortality assessment attributed to long term exposure to fine particles in ambient air of the megacity of Tehran. Iran. Environ Sci Pollut Res, 25, 14254–14262.

Wang, R. & Wu, Y. & Ke, W. & Zhang, S. & Zhou, B. & & Hao, J. (2015). Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?. Applied Energy Res, 147, 92-103.

Wang, W. & Lin, Y. & Yang, H. & Ling, W. & Liu, L. & Zhang, W. & Jiang, G. (2022). Internal Exposure and Distribution of Airborne Fine Particles in the Human Body. Methodology, Current Understandings, and Research Needs. Environmental Science & Technology, 56(11), 6857-6869.

Winkler, S. & Anderson, J. & Garza, L. & Ruona, W. & Vogt, R. & Wallington, T. (2018). Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: how low should we go?. Climate and Atmospheric Science, 1(1), 26.

Yang, Z. & He, Z. & Zhang, K. & Zeng, L. & Nazelle, A. (2021). Investigation into Beijing commuters’ exposure to ultrafine particles in four transportation modes: bus, car, bicycle and subway. Atmospheric Environment, 266.

Zargari, S. & Khan A. (2010). Fuel Consumption Model for Bus Rapid Transit. Journal of Advanced Transportation, 37(2), 139-157.

Zeer, V. & Filatov, A. & Vetrov, S & Glukhikh, R. & Perikov, D. (2019). Relevance of using electrobuses as public transport in the city of Krasnoyarsk. IOP Conference Series: Materials Science and Engineering, 632.

Zimakowska, M. & Laskowski, P. Emission from Internal Combustion Engines and Battery Electric Vehicles: Case Study for Poland. Atmosphere, 13(3), 401.

Zuurbier, M. & Hoek, G. & Oldenwening, M. & Lenters, V. & Meliefste, K. & Hazel, P. & Brunekreef, B. (2010). Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route. Environmental Health Perspectives research, 116.

How to Cite
VargasD., GalvisB., DuránV., & BernalI. C. (2023). Nanoparticles on electric, gas, and diesel buses in mass transit buses of Bogotá Colombia. TeMA - Journal of Land Use, Mobility and Environment, 16(2), 367-381.