Climate variation in metropolitan cities
Spatial self-containment, contiguity and space-time relations in Cagliari urban area (Sardinia, Italy)
Abstract
Climate has always been studied in cities, where strong relations can be found with urban form and spatial patterns. Temperature variations, heat islands and floods are among the main factors to represent climatic phenomena and related changes over time. The same urban location choices come out from the need to resist adverse events. In general, the urban form can be related to climatic conditions, both to benefit from positive externalities - healthiness, sun exposure, ventilation, water supply - and to reduce negative externalities - thermal stress, heavy rainfall and heat islands. Furthermore, urban development, particularly attributable to land take, put in evidence how the European, and particularly the Italian, urban system presents 56% of population settled in urban areas with a high value of sealed surfaces and limited green areas, so that urban centres are more and more characterizing as climate change hotspots. In this framework the hereby presented research is developed, focused on the observation of the temperature variations in urban areas in time, aimed at capturing the changes occurring also considering the spatial extent and form of the cities more vulnerable to such phenomenon. The research in particular was aimed at exploring possible different ways of aggregating areas to a proper urban dimension: in particular Metropolitan Cities (MC) and Labor Market Area (LMA) in order to identify the most suitable geographical dimension both for the observation of the phenomenon and for the policy targets of climate neutrality. This is done analysing the spatial autocorrelation of climate-related variations in space and time.
Downloads
References
Accetturo, A., Albanese, G., Ballatore, R.M., Ropele, T. & Sestito, P. (2022). Regional inequality in Italy in the face of economic crises, recovery, and the health emergency. Occasional Papers, 685. Roma: Bank of Italy, Economic Research and International Relations Area.
Andreoni, V., & Galmarini, S. (2012). Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption. Energy, 44(1), 682-691. https://doi.org/10.1016/j.energy.2012.05.024.
Anselin, L. (1988). Spatial Econometrics: Methods and Models. Dordrecht: Springer.
https://doi.org/10.1007/978-94-015-7799-1.
Anselin, L. (1995). Local indicators of spatial association – LISA. Geographical analysis, 27(2), 93-115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Balletto, G., Borruso, G., & Donato, C. (2018). City dashboards and the Achilles’ heel of smart cities: putting governance in action and in space. International Conference on Computational Science and Its Applications. 654-668. Cham: Springer. https://doi.org/10.1007/978-3-319-95168-3_44.
Cobbinah, P.B. (2021). Urban resilience in climate change hotspot. Land use policy, 100, 104948.
https://doi.org/10.1016/j.landusepol.2020.104948.
Dameri, R.P., Benevolo, C., Veglianti, E., & Li, Y. (2019). Understanding smart cities as a glocal strategy: A comparison between Italy and China. Technological Forecasting and Social Change, 142(C), 26-41. https://doi.org/10.1016/ j.techfore.2018.07.025.
Di Febbraro, M., Menchetti, M., Russo, D., Ancillotto, L., Aloise, G., Roscioni, F., ..., & Mori, E. (2019). Integrating climate and land‐use change scenarios in modelling the future spread of invasive squirrels in Italy. Diversity and Distributions, 25(4), 644-659. https://doi.org/10.1111/ddi.12890.
Dwivedi, Y.K., Hughes, L., Kar, A.K., Baabdullah, A.M., Grover, P., Abbas, R., ..., & Wade, M. (2022). Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. International Journal of Information Management, 63, 102456. https://doi.org/10.1016/j.ijinfomgt.2021.102456.
Fan, X., Miao, C., Duan, Q., Shen, C., & Wu, Y. (2021). Future climate change hotspots under different 21st century warming scenarios. Earth's Future, 9(6), e2021EF002027. https://doi.org/10.1029/2021EF002027.
Ferguson, R.J. (2022). The Political Challenge of Linking Climate Change and Sustainable Development Policies: Risks and Prospects. In P.S. Low (Eds.), Sustainable Development: Asia-Pacific Perspectives, 298-314. Cambridge:Cambridge University Press. https://doi.org/10.1017/9780511977961.028.
Geary, R.C. (1954). The contiguity ratio and statistical mapping. The Incorporated Statistician, 5(3), 115-146.
Gonzalez-Trevizo, M.E., Martinez-Torres, K.E., Armendariz-Lopez, J.F., Santamouris, M., Bojorquez-Morales, G., & Luna-Leon, A. (2021). Research trends on environmental, energy and vulnerability impacts of Urban Heat Islands: An overview. Energy and Buildings, 246, 111051. https://doi.org/10.1016/j.enbuild.2021.111051.
Hurlimann, A., Moosavi, S., & Browne, G.R. (2021). Urban planning policy must do more to integrate climate change adaptation and mitigation actions. Land Use Policy, 101, 105188. https://doi.org/10.1016/j.landusepol.2020.105188.
Kellogg, W.W., & Schware, R. (2019). Climate change and society: consequences of increasing atmospheric carbon dioxide. New York: Routledge. https://doi.org/10.4324/9780429048739.
Kinley, R., Cutajar, M.Z., de Boer, Y., & Figueres, C. (2021). Beyond good intentions, to urgent action: Former UNFCCC leaders take stock of thirty years of international climate change negotiations. Climate Policy, 21(5), 593-603. https://doi.org/10.1080/14693062.2020.1860567.
Koop, S.H., & van Leeuwen, C.J. (2017). The challenges of water, waste and climate change in cities. Environment, development and sustainability, 19(2), 385-418. https://doi.org/10.1007/s10668-016-9760-4.
Lee, J., Wong, D.W.S., & David, W.S. (2000). GIS and Statistical Analysis with ArcView. Hoboken: Wiley.
Majumdar, D.D., & Biswas, A. (2016). Quantifying land surface temperature change from LISA clusters: An alternative approach to identifying urban land use transformation. Landscape and Urban Planning, 153, 51-65. https://doi.org/10.1016/J.LANDURBPLAN.2016.05.001.
Marando, F., Heris, M.P., Zulian, G., Udías, A., Mentaschi, L., Chrysoulakis, N., ... & Maes, J. (2022). Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 77, 103564. https://dx.doi.org/10.1016/j.scs.2021.103564.
Morabito, M., Crisci, A., Guerri, G., Messeri, A., Congedo, L., & Munafò, M. (2021). Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of the Total Environment, 751, 142334. https://doi.org/10.1016/j.scitotenv.2020.142334.
Moran, P.A.P. (1948). The interpretation of statistical maps. Journal of the Royal Statistical Society: Series B, 10(2), 243-251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x.
Murgante, B., Borruso, G. (2012). Analyzing migration phenomena with spatial autocorrelation techniques. In: B. Murgante et al. (Eds.) ICCSA 2012. LNCS, 7334, 670-685. Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-31075-1_50.
O’Sullivan, D., Unwin, D.J. (2010). Geographic Information Analysis: Second Edition. Hoboken: Wiley.
Palumbo, M.E., Mundula, L., Balletto, G., Bazzato, E., & Marignani, M. (2020). Environmental dimension into strategic planning. The case of metropolitan city of Cagliari. In International Conference on Computational Science and Its Applications. 456-471. Cham: Springer. https://doi.org/10.1007/978-3-030-58820-5_34.
Papa, R., Gargiulo, C., & Zucaro, F. (2014). Climate Change and Energy Sustainability. Which Innovations in European Strategies and Plans. TeMA, Journal of Land Use, Mobility and Environment. https://doi.org/10.6092/1970-9870/2554.
Phelps, N.A. (2021). The Urban Planning Imagination: A Critical International Introduction. John Wiley & Sons.
Romano, B., Zullo, F., Fiorini, L., Marucci, A., & Ciabò, S. (2017). Land transformation of Italy due to half a century of urbanization. Land use policy, 67, 387-400. https://doi.org/10.1016/j.landusepol.2017.06.006.
Salvati, A., Monti, P., Roura, H.C., & Cecere, C. (2019). Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy and Buildings, 185, 162-179. https://doi.org/10.1016/j.enbuild.2018.12.024.
Sui, D.Z. (2004). Tobler’s first law of geography: a big idea for a small world? Annals of the Association of American Geographers. 94(2), 269-277. https://doi.org/10.1111/j.1467-8306.2004.09402003.x.
Susca, T. (2020). Climate Change and European Cities. European Journal of Climate Change, 2(1), 1-2. https://doi.org/10.34154/2020-ejcc-0201-01-02/euraass.
Tobler, W.R. (1970). A computer movie simulating urban growth in the Detroit Region. Economic Geography. 46, 234-240.
Tobler, W. (2004). On the first law of geography: a reply. Annals of the Association of American Geographers, 94(2), 304-310. https://doi.org/10.1111/j.1467-8306.2004.09402009.x.
Yang, L., Yu, K., Ai, J., Liu, Y., Lin, L., Lin, L., & Liu, J. (2021). The influence of green space patterns on land surface temperature in different seasons: a case study of Fuzhou City, China. Remote Sensing, 13(24), 5114. https://doi.org/10.3390/rs13245114.
UNFCCC (2015). The Paris Agreement, Available at: https://unfccc.int/sites/default/files/english_paris_agreement.pdf.
UNFCCC (2020). Decision 2/CMA.2 - Warsaw International Mechanism for Loss and Damage associated with Climate Change Impacts and its 2019 review. Madrid: Spain.
https://whc.unesco.org/en/climatechange/
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf
https://www.meteoblue.com/en/weather/archive/export/italy-cross_canada_5984755
https://www.istat.it/en/labour-market-areas
https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_FinalDraft_FullReport.pdf
Copyright (c) 2022 TeMA - Journal of Land Use, Mobility and Environment
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following:
1. Authors retain the rights to their work and give in to the journal the right of first publication of the work simultaneously licensed under a Creative Commons License - Attribution that allows others to share the work indicating the authorship and the initial publication in this journal.
2. Authors can adhere to other agreements of non-exclusive license for the distribution of the published version of the work (ex. To deposit it in an institutional repository or to publish it in a monography), provided to indicate that the document was first published in this journal.
3. Authors can distribute their work online (ex. In institutional repositories or in their website) prior to and during the submission process, as it can lead to productive exchanges and it can increase the quotations of the published work (See The Effect of Open Access)